Thermodynamic Stabilities of $MO_{2+x}(s)$ (M = U, Np, Pu and Am), Pourbaix diagrams.

Pierre VITORGE^{1,2*}, Hélène CAPDEVILA³, Serge MAILLARD⁴, Marie-Hélène FAURE¹, Thomas VERCOUTER¹

¹CEA DEN Saclay DPC/SCPCA/LCRE, ⁽²UMR 8587 Université d'Evry - CNRS - CEA) 91191 ^{3,4}CEA DEN Cadarache DED/SAMRA/(LCPC³ or LGEM⁴) 13108 Saint-Paul-lez-Durance France

The experimental solubilities of the hydrated amorphous freshly precipitated $M(OH)_z(am)$ and $MO_2(OH)_z(am)$ compounds are often used as an upper limit for the safety assessments of deep waste repositories, since these compounds slowly transform to less soluble ones, as typically $M(OH)_4(am)$ to $MO_2(cr)$. Solubility (vs. redox potential) at pH=8, and E-pH predominance diagrams are plotted in aqueous solutions at 25°C by using thermodynamic data recently selected by the NEA-TDB review, or estimated by using classical chemical analogies for the non-redox reactions. The solubilities and relative stabilities are also calculated for the MO_{2+x}(s) crystalline compounds of known stabilities: $U_4O_9(s)$, $U_3O_7(s)$, $U_3O_8(s)$ and $Np_2O_5(s)$ where 2+x =2.25, 2.33, 2.67 and 2.5 respectively. The stabilities of the other MO_{2+x}(s) compounds are estimated by analogy: $M_4O_9(s)$ (M=U, Np, Pu), $M_3O_7(s)$ and $M_3O_8(s)$ (M=U, Pu) and $M_2O_5(s)$ (M=Np, Am) are predicted to be more stable (*i.e.* less soluble), than the amorphous hydroxides. However their precipitation have never been observed at room temperature possibly for kinetic reasons or difficulties in interpreting solubility experiments.

KEYWORDS: Uranium, Neptunium, Plutonium, Americium, thermodynamic, redox, hydrolysis, solubility