ACTINIDE CHEMISTRY IN AQUEOUS SOLUTIONS FOR WASTE DISPOSAL AND ENVIRONMENTAL STUDIES.

Pierre Vitorge^{1,2}, Catherine Beaucaire², Colin Marsden³, Michael Descostes², Hélène Capdevila⁴, Dominique You², Patrick Lovera². (1) UMR 8587 Université d'Evry-CNRS-CEA².pierre.vitorge(at)cea.fr. (2) CEA DEN Saclay DPC/SECR, F91191 Gif sur Yvette cedex, France. (3) LPQ IRSAMC Université Paul Sabatier, 118 route de Narbonne, F31062 Toulouse cedex 4, France. (4) CEA DEN Cadarache DTCD/SPDE ,13108 Saint-Paul-lez-Durance cedex, France.

Mass Action Law is used for interpreting Aqueous Speciation in Stripa groundwaters, and in laboratory. A mechanism is proposed for Pyrite (FeS₂) dissolution. Activity coefficients are calculated with the SIT formula in up to 4 mol.kg⁻¹ auqeous solution; its empirical ion pair coefficients often vary as 1/T. Surface complexation and SIT formulas are compared. e⁻, the notation of electrochemists is linked to Standard State. Thermodynamics of Solid Solutions and associated Ion Exchange Equilibria are discussed. Thermodynamic stabilities of $PuO_{2+x}(s)$ compounds are estimated. $PuO_2(s)$ solubility product was measured, despite Pu^{4+} disproportionates in aqueous solutions. UO_2^{2+} hydrolysed species were ab initio calculated.