Activity coefficient vs. surface complexation Pierre Vitorge

- Boltzmann Poisson Van der Waal calculi in spherical and planar geometries for Activity coefficients and Surface complexation respectively.
- Stoichiometries and thermodynamic stabilities of complexing and redox reactions for Actinides

Actinide chemistry in aqueous solutions for waste disposal and environmental studies

For the management of radioactive wastes, Equilibrium Speciation is studied in aqueous solutions: Chemistry of Actinides and other Radionuclides (critical reviewing and measuring thermodynamic data), also thermodynamics, methodologies...

Mass Action Law

UMR 8587 in Nature

in Laboratory (measuring equilibrium constants and stoichiometries) ...for Solid Solutions ...and Ionic Exchange Equilibria

Activity coefficients

SIT (and Pitzer) Formula = extended Debye and Hückel Formula

= Boltzmann – Poisson Calculus ...as for Surface Complexation Formula

Consistency

of thermochemical data between different scientific fields, *i.e.* reference states...

œ

UMR 8587

Thermodynamics of solid solutions as published in text books

Example: $Na_{2x-1}NpO_2(CO_3)_x$

or equivalently $Na_{2(1-y)}(NpO_2)_{2y}CO_3$ where y = 1/(2x)

the amount of CO_3^{2-} is the amount of solid matrix while Na⁺/NpO₂⁺ cations are exchanged

Dissolution Reaction Na_{2(1-y)}(NpO₂)_{2y}CO₃ \rightarrow 2(1-y)Na⁺ + 2y NpO₂⁺ + CO₃²⁻ (1)

lonic Exchange Reaction Na⁺(s) + NpO₂⁺(aq) \rightarrow Na⁺(aq) + NpO₂⁺(s)

Mass Action Law for Reaction(2): $D = \frac{[Na^{+}(s)] [NpO_{2}^{+}(aq)]}{[Na^{+}(aq)] [NpO_{2}^{+}(s)]} = \frac{2(1-y)[NpO_{2}^{+}(aq)]}{2y [Na^{+}(aq)]}$

D = K_{s1} / K_{s0} is obtained by linear combinations of chemical potentials where $K_{sy} = [Na^{+}(aq)]^{2(1-y)} [NpO_{2}^{+}(aq)]^{2y} [CO_{3}^{2-}(aq)]$ are the solubility product of the endmembers for y = 0 or 1

Similarly $K_{sy} = K_{s0}^{1-y} K_{s1}^{y} (1-x)^{b(1-y)} x^{cy}$ which is **only similar to** Mass Action Law for Reaction(1) (2)

Pierre Vitorge *et al.* (France) DEN Saclay DPC/**SECR**/LSRM

Actinide carbonate complexes

Thermodynamics of solid solutions Dissolution Reaction ↔ Ionic Exchange Reaction

Actinide carbonate complexes

Activity coefficients

using SIT formula at 25°C for Reaction $Pu^{4+} + e^- \rightarrow Pu^{3+}$

$IgK_{Pu4+/Pu3+} + 7 D = IgK_{Pu4+/Pu3}^{\circ} + \Delta \varepsilon_{Pu4+/Pu3+} m_{CIO_4-}$ 0.509√I_m /- at 25°C

Equilibrium constant K is constant in a given ideal system, typically a solution of high and constant ionic strength I.

Reference state $K^{\circ} = K(I \rightarrow O)$

I_m is the molal ionic strength (mol.kg⁻¹)

here $m_{CIO_4} = I_m$,

$\Delta \varepsilon$ appears to be constant, which validates SIT Formula 8587 ш V/SHE IgK(Pu⁴⁺/Pu³⁺) + 7 25°C $\Delta_{r}G = -R T \ln K_{Pu4+/Pu3+} = -F E_{Pu4+/Pu3+},$ ²14+Pu³⁺) + 7 R is the molar gas constant, 1.1 F the Faraday constant *et al.* (1995) 1.07 8 Capdevila H. 1.04 measured at 25°C interpolated at 25°C from data at 5 to 65°C • $m(ClO_4)$ (mol.kg 1.01 17 Capdevila H., Vitorge P. (1995) Radiochim. Acta 68, 1, 51-62 0 2 3 4 . & CEA-N-2762 (1994)

Pierre Vitorge et al. (France) DEN Saclav DPC/SECR/LSRM

Actinide carbonate complexes

Mexico de octubre del 2004

Activity coefficients

SIT formula at 25°C for the highly charged species Pu⁴⁺

Capdevila H., Vitorge P. Radiochim. Acta 82, 11-16 (1998)

Pierre Vitorge *et al.* (France) DEN Saclay DPC/**SECR**/LSRM

Actinide carbonate complexes

Mexico de octubre del 2004

Activity coefficients at 25°C: conclusion

SIT Formula accounts for experimental data to surprisingly high ionic strength, even for highly charged species.

However, this might very well be fortuitous; several linear effects might very well be empirically included in Ion Pair term ϵ .

It is interesting to check whether SIT formula is also consistent with **temperature influence**, since it was proposed by using Statistical Physics as a result of temperature effect (disorder) and interactions (order).

Activity coefficients

temperature Influence on ϵ , the ion pair coefficient of SIT formula.

It appears that

in several cases, (ϵ / T) does not depend on temperature, T.

Despite this corresponds to the model used to obtained SIT Formula, this was not specially expected.

As a consequence the values of the activity coefficients, can be extrapolated from their values known at typically 25°C, *i.e.* without any new fitted parameter.

Activity coefficients

comparison of SIT and Surface Complexation Formula.

Actinide carbonate complexes

Methodologies for estimating stoichiometries and stabilities

Carbonate complexes of M³⁺, a well known system(?)

Differences between Eu, Am and Cm are less than experimental accuracy. Sensitivity analysis. Limiting complex(es) Comparison with sulfate complexes

Carbonate complexes of M⁴⁺

Actinide carbonate complexes

Methodologies for estimating stoichiometries and stabilities

Maximum possible stabilities for non well established stoichiometries

Carbonate complexes of M³⁺

Methodologies for estimating stoichiometries and stabilities

Introduction. For the management of radioactive wastes, Equilibrium speciation is studied in aqueous solutions for Actinides:

critical reviewing and measuring thermodynamic data, (see typically NEA TDB reviews, and corresponding methodologies and thermodynamics basis)

Carbonate complexes of M³⁺, a well known system(?) Differences between Eu, Am and Cm are less than experimental accuracy.

Sensitivity analysis. Limiting complex(es)

Comparison with sulfate complexes

Carbonate complexes of M4+

K_i is the constant of Equilibrium

$$M(CO_3)_{i-1}^{5-2i} + CO_3^{2-} \rightarrow M(CO_3)_i^{3-2i}$$

- → Differences between Eu, Am and Cm are less than experimental accuracy
- →Consistency in stability data from different laboratories is obtained only for MCO₂⁺

Origins of differences in selected values:

- → Giving more weight on selected measurements
- → Experimental inconsistencies (typically activity coefficient, junction potentials)
- \rightarrow difficulty in decomposing the experimental observations into the contributions of each soluble the species *i.e.* in determining the actual stoichiometries (sensitivity analysis),

¹P.Robouch Thèse Univesité L.Pasteur, Strasbourg (France) 1987 ²R.Silva et al. Chemical Thermodynamics of Americium NEA, Paris (France) 1995 ³R.Guillaumont *et al.* Update on the Chemical Thermodynamics of... NEA, Paris (France), Elsevier Ed. 2003

Carbonate complexes of Eu³⁺

Stoichiometries of the limiting complexes from solubility study

¹Faucherre *et al.*, *Rev. Chim. Minér.*, t3, 953 (1966) ²T. Vercouter, P. Vitorge, C. Moulin. Communication O22-02 ATALANTE 2004, Nîmes (France)

Pierre Vitorge *et al.* (France) DEN Saclay DPC/**SECR**/LSRM

Actinide carbonate complexes

Mexico de octubre del 2004

Anyhow, our TRLFS recent study⁴ rather confirms NEA 1995 selection for Eu (NaClO₄-Na₂SO₄)

¹R.Silva, G. Bidoglio, M.H. Rand, P.B. Robouch, H. Wanner, I. Puigdomenech. *Chemical thermodynamics of Am.* NEA Paris (France) 1995
 ²R. Guillaumont, T. Fanghänel, V. Neck, J. Fuger, D.A. Palmer, I. Grenthe, M.H. Rand. *Update on the chemical thermodynamics*

of U, Np, Pu, Am and Tc, Elsevier, Amsterdam, 2003

³P. Paviet, T. Fanghänel *et al.*, Radiochim. Acta, 74, 99-103 (1996) and V. Neck, T. Fanghänel *et al.*, Report, 1-108 (1998)

⁴T. Vercouter, P. Vitorge, C. Moulin. Communication O22-02 ATALANTE 2004, Nîmes (France)

Comparison with sulfate complexes of UO₂²⁺

Complexes of M³⁺ Conclusion

UMR

8587

When **intermediary species** are **stable in narrow domains** of experimental conditions, it is difficult to measure independently their physical properties (as typically molar absorbance), and their contribution to measured signals. Beside other difficulties, this can often explain **differences in the values determined by different authors** for equilibrium constants.

Missing data on

Activity coefficients, specially for highly negative complexes, **Ion pairing?** Structure of concentrated electrolytes? Possible mixed complexes, *i.e.* M(CO₃)_i(OH)_i^{3-2i-j}

(assuming no polynuclear complex).

Why no mixed complex have ever been evidenced?

Experimental difficulties?

Choice of experimental conditions?

Carbonate complexes of M⁴⁺

Introduction. For the management of radioactive wastes, Equilibrium speciation is studied in aqueous solutions for Actinides:

UMR

8587

critical reviewing and measuring thermodynamic data, (see typically NEA TDB reviews, and corresponding methodologies and

thermodynamics basis)

Carbonate complexes of M³⁺, a well known system(?)

Differences between Eu, Am and Cm are less than experimental accuracy.

- Sensitivity analysis.
- Limiting complex(es)

Comparison with sulfate complexes

Carbonate complexes of M⁴⁺

 $M(CO_3)_i^{4-2i}$ stoichiometries for i = 4 and 5, for several An(IV) and Ln(IV). However, i = 6 was also proposed Th(IV) and Ce(IV). Maximum possible values are proposed for the formation constants of possible $M(CO_3)_i(OH)_j^{4-2i-j}$ complexes based on published solubility data.

Pierre Vitorge *et al.* (France) DEN Saclay DPC/**SECR**/LSRM

Actinide carbonate complexes

Mexico de octubre del 2004

Pu(IV) solubility in carbonate media

 $Pu(CO_3)_5^{6-2}$ $Pu(CO_3)_4^{4-2}$ are enough $\frac{1}{2}$ o account for experimental observation at high CO₂(g) partial pressure. Adding $Pu(OH)_4(aq)$ is enough to account for most of the other experimental data; however, experimental solubilities are not consistent and activity coefficients were fitted.

Pierre Vitorge *et al.* (France) DEN Saclay DPC/**SECR**/LSRM

Np(IV) solubility in carbonate media

W.Ullman, P.Vitorge. Chemical Thermodynamics of Neptunium and Plutonium. Paris OCDE AEN, Elsevier (2001).

 $Np(CO_3)_5^{6-}+Np(CO_3)_4^{4-}$ are enough to account for experimental observation at high $CO_2(g)$ partial pressure. Adding $Np(OH)_4(aq)$ is enough to account for most of the other experimental data; however, experimental solubilities are not consistent and activity coefficients were fitted.

Pierre Vitorge *et al.* (France) DEN Saclay DPC/**SECR**/LSRM

Th solubility in carbonate media

Th limiting carbonate complex

Th and Pu(IV) possible (hyroxo-)carbonate complexes

	$M(CO_3)_i(OH)_j^{(4-2i-j)+}$	$lg\beta^{o}_{i,j}(Pu)^{1}$	lgβ _{ij} (Th)²	lg β _{ij} (Th)	$)^3$
œ	$M^{+^{-}}$ MOH^{3+} $M(OH)_4(aq)$ $MCO_3(OH)_2(aq)$ $MCO_3(OH)_3^{-}$ $M(CO_3)OH^{-}$	13.2 < 47.9 <<42 <<47.7	27.0 34.8	<8.7 27.4 26.9	 Maximum possible stabilities estimated for Pu complexes¹ are consistent with the values proposed or estimated for Th. Depending on their stoichiometries, many possible mixed complexes would be more stable in the experimental conditions of the Th study: corresponding estimation of the upper limits of their stability constants are closer to the actual value. However not all published experimental data have been taken into account for Th.
UMR 8587	$M(CO_3)_2OH$ $MCO_3(OH)_4^{2-}$ $M(CO_3)_2(OH)_2^{2-}$ $M(CO_3)_3^{2-}$ $M(CO_3)_2(OH)_3^{3-}$ $M(CO_3)_3OH^{3-}$ $M(CO_3)_2(OH)_4^{4-}$ $M(CO_3)_3(OH)_2^{4-}$	<40.5 <<51.8 <46.2 <37.6 <50.5 <42 <<41 37	37.4 33.3	<23.6 < 34 33.3 <22.6 <36.6 <31.4 38.4 <35.7 27.4	
	$M(CO_{3})_{4}$ $M(CO_{3})_{3}(OH)_{3}^{5}$ $M(CO_{3})_{4}OH^{5}$ $M(CO_{3})_{3}(OH)_{4}^{6}$ $M(CO_{3})_{4}(OH)_{2}^{6}$ $M(CO_{3})_{5}^{6}$	37 <<40. ₅ <<39 <<38. ₅ <<37 35.6	34.4	 27.4 <39.5 34.1 <39.3 <36.4 <31.5 	

¹P.Vitorge, H.Capdevila. Radiochim. Acta 91, 623–631 (2003)

²M. Altmaier, V. Neck, Th. Fanghänel NRC6 2004- O3

³Another possible interpretation of experimental data from Ref.²

Operational conclusions

Maximum possible possible values for stabilities, a conservative approach a way for comparing published experimental data

