PA3-9 10th International Conference on Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere MIGRATION'05 (2) CNRS / INPG / IRD / UJF Laboratory for the study of Transfers in Hydrology and Environment # Estimating the stabilities of uranium(IV) complexes with sulfoxyanions V. PHROMMAVANH¹, M. DESCOSTES¹, P. VITORGE¹, C. BEAUCAIRE¹, J.-P. GAUDET² ## Can any S_xO_v^z- anions solubilize U(IV)? ### Methodology and results Comparing standard complex formation constants against pKa of ligands - for various cations Ionic strength corrections with SIT Formula (Specific Interaction Theory) Any impact on U(IV) speciation? **ESTIMATION OF** **UNKNOWN COMPLEX** **FORMATION** CONSTANTS U4+ / S2O22- a b pΗ lg K 25 °C 25 °C 4 mM S 11.6 mM CO₃ 11.6 mM CO₃ 4 mM S ### ication to natural environmen Ig (% species) as a function of pH U(OH)₄(aq) E(V/SHE) Hypothesis (a) Redox disequilibrium between U and S systems: -US₂O₃2+? -U⁴1 $[S]_t \approx [SO_4^2]_t$ -UOH3+ SO₃²- partially reduced by U(IV), forming S₂O₃²-U(OH)₄(aq) U4+ UQH3+ Hypothesis (b) Redox equilibrium on U(IV)-U(VI) line: -US₂O₃2+? $-USO_3^{2+}$? 25 °C $[S]_{t} \approx [S_{2}O_{3}^{2}]_{t}$ SO₄²⁻ strongly reduced by U(IV) SO₃² partially reduced by U(IV) Rough U(IV)-U(VI) limit Conclusions Despite this have never been evidenced -to our knowledge-, our rough estimations of the stabilities of 1-1 complexes suggest - S₂O₃²⁻ might very well form complexes with U(IV) - In natural environment (pH≈7), U⁴⁺ / S₂O₃²⁻ 1-1 complex does not seem to form (note that complexes with number of ligand molecule > 1 are not considered for S₂O₃²⁻ and SO₃²⁻)