Sulfate Complexation of Trivalent Lanthanides Probed by Nanoelectrospray Mass Spectrometry and Time-Resolved Laser-Induced Luminescence

Thomas Vercouter,* Badia Amekraz,* Christophe Moulin, Eric Giffaut, and Pierre Vitorge

CEA-DEN Saclay DPC/SECR/LSRM, 91191 Gif-sur-Yvette Cedex, France, Laboratoire Analyse et Environnement (CNRS-CEA-Université d’Evry UMR 8587), Université d’Evry-Val d’Essonne, bd. F. Mitterrand, 91025 Evry, France, and ANDRA, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France

Received October 26, 2004

Sulfate complexation of lanthanides is of great interest for predicting speciation of radionuclides in natural environments. The formation of LaSO$_4^{+}$(aq) in HNO$_3$/H$_2$SO$_4$ aqueous solutions of low ionic strength (I) was studied by nanoelectrospray ionization mass spectrometry (nanoESI-MS). Several gaseous species containing LaSO$_4^{+}$ were detected. The formation constant of LaSO$_4^{+}$(aq) was determined and extrapolated to I$_0$ (log β_1 = 3.5 ± 0.3) by using a simple specific ion interaction theory (SIT) formula. This value supports the potential of nanoESI-MS for the study of kinetically labile species. The species La(SO$_4$)$_2^{-}$ was also detected. In addition, time-resolved laser-induced luminescence (TRLIL) was used to study Eu(III) speciation under ionic conditions of 0.02−0.05 M H$^+$ (H$_2$SO$_4$/HClO$_4$) and 0.4−2.0 M Na$^+$ (Na$_2$SO$_4$/NaClO$_4$). The data were interpreted with the species EuSO$_4^{+}$ (log β_1 = 3.78 ± 0.1) and Eu(SO$_4$)$_2^{-}$ (log β_2 = 1.5 ± 0.2). For extrapolating to I = 0, all of the major ions were taken into account through several SIT ion-pair parameters, ϵ. Most of the ϵ values were estimated by analogy to known parameters for similar ion-pair interactions using linear correlations, while $\epsilon_{Eu^{+}SO_4^{2-}}$ = 0.86 ± 0.5 was fitted to the experimental data because, to date, SIT coefficients between multicharged species are not reported. The formation constants obtained here confirm some of those previously measured for Ln(III) and An(III) by various experimental techniques, and conversely do not give credit to the idea that in equilibrium conditions TRLIL and other spectroscopic techniques would provide stability constants of only inner-sphere complexes. The fluorescence lifetimes measured for EuSO$_4^{+}$ and Eu(SO$_4$)$_2^{-}$ were consistent with the replacement of one H$_2$O molecule in the first coordination sphere of Eu$^{3+}$ for each added SO$_4^{2-}$ ligand, suggesting a monodentate SO$_4^{2-}$ coordination.

1. Introduction

Because of their extensive distribution in natural environments and their binding capacity for metal ions, inorganic ligands play a major role in the environmental transport, fate, and bioavailability of heavy metals. This raises concerns about the possibility of the formation of soluble complexes with inorganics, which could modify the migration of long-lived radionuclides released in natural aquifers. The knowledge of radionuclide transport in the geosphere is a key issue for the assessment of the safety of possible radioactive waste repositories. The thermodynamic data for their interactions with inorganics need to be determined to properly predict their speciation in natural systems. Several trivalent f-block elements are long-lived radionuclides, typically the actinides (An) Pu, Am, and Cm, and, among the lanthanides (Ln), the 151Sm isotope. Moreover analogies between An$^{3+}$ and...
Ln$^+$ are sometimes used to implement databases.5 Inorganic ligands can be roughly divided into two distinct groups on the basis of their reactivity for M$^{3+}$ f-element cations and their usual concentrations in groundwaters. The first includes the carbonate and hydroxide anions that often form major complexes with An$^{3+}$ and Ln$^{3+}$ in deep groundwaters; they have been extensively studied.7–10 The second includes the weaker or less abundant ligands, the sulfate, phosphate, silicate, chloride, and fluoride anions.11 Among the second group, the sulfate anions deserve particular interest.11b In France, an underground laboratory for radioactive waste disposal studies is currently under construction in a Calliove–Oxfordian clay formation, where a sulfate concentration of 0.031 M has recently been proposed for the interstitial waters of the clayey materials.12 Thus, reliable complexation constants are needed to determine if this concentration could significantly affect the radionuclide speciation. Despite many years of research, the sulfate complexation of An(III) and Ln(III) is still a matter of debate, and thus, its consequence on the mobilities of long-lived radionuclides through natural aquifers remains unclear.

Data for the formation of sulfate complexes of trivalent lanthanides have been obtained by using techniques such as conductimetry, solvent extraction, and UV absorption. Table 1 summarizes the stepwise formation constants (log β_1 and log K_2) reported in the literature for lanthanum.11–22 and

![Table 1. Stepwise Formation Constants of LaSO$_4^-$, La(SO$_4$)$_2^{2-}$, EuSO$_4^-$, and Eu(SO$_4$)$_2^{2-}$ in the Temperature Range of 20–25 °C](image)

a Methods are denoted as follows: cal = calorimetry, con = conductimetry, ul abs = ultrasonic absorption, pot = potentiometry, extr = solvent extraction, sol = solubility, sp = spectrophotometry, ix = ion exchange. b As the speciation model accounted for EuSO$_4^+$ and Eu(SO$_4$)$_2^{3+}$, the log β_1 value may be influenced by log β_3. c This work.

9 Silva, R. J.; Bidoglio, G.; Rand, M. H.; Robouch, P. B.; Wanner, H.; Puigdomenech, I. Chemical Thermodynamics of Americium; Elsevier BV: Amsterdam, 1995.

europium$^{132-31}$ trivalent ions. Several measurements in the ionic strength range of 0.05–2 M have been reported, while some values have been corrected to zero ionic strength and lie between 3.35 and 3.82 for log β_i^2 and 1.78 and 1.85 for log K_2^0. In the case of the An(III) complexes, the formation constants that are usually taken into account are the ones selected by the NEA-TDB critical reviews (Thermochemical Database Project of the Nuclear Energy Agency, OECD).9,10 log $\beta_i^2 = 3.85 \pm 0.03$ and log $K_2^0 = 1.5 \pm 0.7$ have been selected by Silva et al. in 1995 from experimental data determined using solvent extraction, ion exchange, and electromigration techniques.9 Values for Cm(III) have also been provided by these techniques as well as by time-resolved laser-induced luminescence (TRLIL), and have been discussed in the recent NEA-TDB updated review.10 TRLIL has already demonstrated its capacity to be used to obtain reliable speciation data.32 Paviet and co-workers were the first to use TRLIL in an attempt to directly observe the formation of sulfate complexes, and they reported formation constants for CmSO$_4$$^2-$ and Cm(SO$_4$$^2-$_n) in 3 mol kg$^{-1}$ NaCl/Na$_2$SO$_4$. In another study by Neck et al., the sulfate complexation of Cm(III) was investigated as a function of the ionic strength (0–5.8 mol kg$^{-1}$ NaCl/Na$_2$SO$_4$).34 The values derived from these spectroscopic studies on Cm (log $\beta_i^2 = 3.30 \pm 0.15$ and log $K_2^0 = 0.40 \pm 0.15$) have been selected by the authors of the NEA-TDB updated review and appeared to be significantly lower than those previously selected for Am: 3.30 and 0.40 as compared to 3.85 and 1.5 for log β_i^2 and log K_2^0, respectively.10 For selecting these lower values, it has been argued that ion pairs had been misinterpreted as complexes in the previously reported solution-based studies leading to incorrect larger formation constants. However, we had already pointed out that spectroscopic techniques provide stability constants that also encompass the possible formation of ion pairs,3 and this will be reported here again; in the present study, the data for Eu(III) obtained by a spectroscopic technique (TRLIL) will be compared with the results from solution-based methods. The consistency of the analogy between Ln(III) and Am(III) in sulfate media will also be checked. It has also been argued in the NEA-TDB updated review that the formation constants reported for Am(III) complexes with inorganics such as carbonate, hydroxide, fluoride, and phosphate are usually close to, or smaller than, those for the corresponding U(VI) complexes.10,35 Thereby, the selected formation constants for the U(VI) sulfate complexes (log $\beta_i^2 = 3.15 \pm 0.02$ and log $K_2^0 = 0.99 \pm 0.07$) would discredit some values selected for Am(III) and support the formation constants for the Cm(III) sulfate complexes determined by TRLIL.9 However, the proposed correlation does not appear to hold for other ligands such as chloride and nitrate, for which the selected formation constants for U(VI) complexes (log $\beta_i^2 = 0.30 \pm 0.15$ and log $\beta_i^2 = 0.17 \pm 0.02$) are lower than the corresponding Am(III) complexes (log $\beta_i^2 = 1.33 \pm 0.20$ and log $\beta_i^2 = 0.24 \pm 0.03$).10,35 These observations likely indicate that making the hypothesis that a common trend for all ions would exist is quite speculative; such comparisons and analogies are only rough guidelines. The effective charges and ionic radii of Am$^{3+}$ and U in UO$_2$$^{2+}$ are indeed similar, but the coordination geometries are different because the ligands bound to UO$_2$$^{2+}$ are located in the plane perpendicular to the linear UO$_2$ axis.

In this study, thermodynamic methodologies were used, together with the advanced spectrometric techniques, TRLIL and nanoelectrospray ionization mass spectrometry (nanoESI-MS). To date, the coordination chemistry of any lanthanide with sulfate has never been investigated by TRLIL. The combination of the spectroscopic information and measurements of species concentrations are valuable for a speciation purpose. A nanoESI mass spectrometer was also used to observe the formation of lanthanide sulfate complexes and determine the stability constants. This technique should allow the investigation of the aqueous speciation of many elements, providing rapid analyses without constraining sample preparation.

In previous investigations, we have explored the potential of ESI-MS for metal speciation and obtained reliable formation constants for the Ln(III) complexes with extractant molecules,36 as well as for the thorium hydroxides.37 However, two main difficulties are currently encountered in the use of ESI-MS as a means to assess stability constants. First, the occurrence of the electroosmosis process is dependent on the presence of electrolytes in the solutions.38 The use of sodium salts to maintain a constant (and high) ionic strength

in the solutions considerably alters the ESI-MS response. In fact, almost all earlier metal complexation studies by ESI-MS were conducted using solutions of low ionic strength, without any addition of electrolyte. The second difficulty is the quantitative analysis of the gas-phase species coming from the Ln3+(aq) aquo ion in solution. A few authors provided some of the first examples of Ln(III) inorganic species observed by ESI-MS, showing that the strongly solvated aquo ions, Ln(H\textsubscript{2}O\textsubscript{n})3+ (n = 8–9), undergo a gas-phase reduction in the transition from the condensed phase to the gas phase, leading to a variety of ionic species, bare metal ions (Ln2+, Ln3+, or both), oxides, hydroxides, and Ln4+ clusters. In aqueous solutions free from organic solvent, the formation of the bare metal ions, Ln3+, is emphasized for the lanthanides higher than Pr.40b It follows a quite low total ion intensity, probably resulting from a lower ion-transmission efficiency of the doubly charged bare metal ion when using a quadrupole mass spectrometer, which precludes the determination of the aqueous concentrations of Ln3+ from the ion intensities. By contrast, the lower-mass lanthanides La, Ce, and Pr, which are strong oxide formers, appear in the mass spectra as oxide [LnO(H\textsubscript{2}O)\textsubscript{n}]+ or hydroxide [LnOH(H\textsubscript{2}O)\textsubscript{n}]2+ clusters, and the total ion intensity could be analytically useful for the determination of the aqueous concentration of Ln3+.

In this study, we evaluated the use of nanoESI-MS as a means to obtain speciation information in sulfate/Ln(III) aqueous solutions. The nanoESI process is based on a capillary action induced by an applied electric field to draw the solution to the emitter tip.41 The solution flow rates are about 100 times lower than those used with ESI (generally 10 \mu L per minute with a syringe pump). In addition to being more sensitive than conventional ESI, the spray is generated at a lower temperature, voltage, and flow rate, which are favorable conditions where the gas-phase ions are representative of the stability of the aqueous species. To our knowledge, this is the first report using a nanoESI-MS approach to determine the formation constant of a metal complex. Herein, we focused on the monosulfate complex of La(III) formed to determine the formation constant of a metal complex. Herein, this is the first report using a nanoESI-MS approach to determine the formation constant of a metal complex. Herein, we focused on the monosulfate complex of La(III) formed to determine the formation constant of a metal complex. Herein, this is the first report using a nanoESI-MS approach to determine the formation constant of a metal complex. Herein, we focused on the monosulfate complex of La(III) formed to determine the formation constant of a metal complex. Herein, this is the first report using a nanoESI-MS approach to determine the formation constant of a metal complex. Herein, we focused on the monosulfate complex of La(III) formed to determine the formation constant of a metal complex. Herein, this is the first report using a nanoESI-MS approach to determine the formation constant of a metal complex.

2. Experimental Section

Materials. Millipore deionized water (Alpha-Q, 18.2 M\textsubscript{Ω} cm) was used throughout the preparations. The lanthanide solutions were prepared from La(NO\textsubscript{3})\textsubscript{3}-6H\textsubscript{2}O (Prolabo, Rectapur, 99.99%) and Eu\textsubscript{2}O\textsubscript{3} (Johnson Matthey, 99.99%). The perchloric, nitric, and sulfuric acid concentrations were adjusted by using 1 M stock solutions prepared from HClO\textsubscript{4} 70% (Merck, GR for analysis), HNO\textsubscript{3} 65% (Merck, Suprapur), and H\textsubscript{2}SO\textsubscript{4} 98% (BDH, Aristar), respectively, and titrated with 0.1 M NaOH (Merck, Titrisol). NaClO\textsubscript{4} >99.0% and Na\textsubscript{2}SO\textsubscript{4} (>99.5%) were purchased from Merck (R. P. Normapur) and used without further purification.

Preparation Procedures. All the preparations and measurements were performed at (23 ± 1) °C. NanoESI-MS measurements were performed in HNO\textsubscript{3}/H\textsubscript{2}SO\textsubscript{4} solutions of La(III). Nitric acid was used, rather than perchloric acid, which produced scattered MS signals because of the isotopic effect of Cl. The pH was measured using a combined-glass microelectrode (Radiometer Analytical, XC161) that was calibrated for its linear response with commercial pH standards (Schott) with an estimated uncertainty of ±0.05. Since the ion strength was low, typically 0.01–0.02 M, the effect of the junction potential was neglected. The H+ concentrations were deduced from the pH measurements which were corrected for the activity coefficient of H+ calculated with the SIT formula (see eq 7). Two sets of experiments have been done at a pH of ~2 with 10-3 and 5 × 10-4 M La(NO\textsubscript{3})\textsubscript{3}. Various volumes of a 0.01 M H\textsubscript{2}SO\textsubscript{4} solution (pH 1.83) were successively added to a 0.01 M H\textsubscript{2}SO\textsubscript{4} solution (pH 2.02), both with the same La(NO\textsubscript{3})\textsubscript{3} concentration, and the pH was measured after each addition. Another set of experiments was performed in a similar manner by mixing 0.1 M HNO\textsubscript{3} and 0.1 M H\textsubscript{2}SO\textsubscript{4} solutions, both with 10-3 M La(NO\textsubscript{3})\textsubscript{3}. Since the pH was out of the calibration range of the electrode, [H+] was calculated from the initial concentration of the acids, the mass action law for the HSO\textsubscript{4}− dissociation, and the mass conservation and electroneutrality relationships. [H+] was found to be close to 0.1 M when the two solutions were mixed. In each set, the ratio of nitric to sulfuric acid was varied to increase the sulfate concentration, while maintaining the ionic strength and pH roughly constant. The compositions of the working solutions were as follows: [SO\textsubscript{4}2−] = 10-4–5.6 × 10-3 M (1.83 < pH < 2.02) with the ion strength, I, varying from 0.01 to 0.02 M, and [SO\textsubscript{4}2−] = 10-3–2 × 10-2 M (0.100 < [H+] < 0.092 M) with I varying from 0.10 to 0.14 M. For TRLIL measurements, all of the aqueous solutions were prepared with 10-4 M Eu(III) to keep a constant [Eu(III)] along the titrations. The first set of experiments was carried out at low ionic strength by titrating a 0.01 M HClO\textsubscript{4} solution with a 0.01 M HClO\textsubscript{4} solution.
H$_2$SO$_4$ solution, and the pH was measured as was done for the similar titration series in the 0.01 M HNO$_3$/H$_2$SO$_4$ solutions for the nanoESI-MS measurements. Two other sets of experiments were carried out at higher ionic strengths and pH > 3: titrations were performed using the initial Eu(III) solutions of 10$^{-3}$ M HClO$_4$ at I = 0.50 and 2.00 M (NaClO$_4$) and 0.30 M Na$_2$SO$_4$ as the titrant solution (−log[H$^+$] = 3.9, I = 0.90 M). The H$^+$ concentration of the Na$_2$SO$_4$ stock solution was determined by potentiometric measurements using an electrode whose reference compartment was filled up with a 0.99 M NaClO$_4$/0.01 M NaCl solution in order to minimize the effect of the junction potential and which was calibrated for H$^+$ concentration with H$^+$ buffer solutions at I = 1 M. The ionic strength of the titrated solutions was calculated from the added volumes and ranged between 0.50 and 0.70 M and 1.45 and 2.00 M for each series. As no acid─basic reaction was expected during titration, [H$^+$] was calculated rather than measured to limit systematic errors in the potentiometric measurements because of the small variations of I.

Time-Resolved Laser-Induced Luminescence. Details about our “FLUO 2001” experimental setup have been given elsewhere. The main features of the excitation source are briefly given here as it was different from that used in our previous studies. The excitation laser beam was generated by a 266 nm quadrupled Brilliant Nd:YAG laser, coupled to an optical parametric oscillator (Quantel, France). The wavelength was tuned to 395 nm, because of the small variations of I.

Nanoelectrospray Ionization Mass Spectrometry. The mass spectra were recorded in positive-ion mode using a μ-J-Quattro triple-quadrupole spectrometer equipped with a nanoES interface (Micromass, Manchester, UK). A 20-μL emitter tip was filled up with the solution to be analyzed, and placed 3 mm from the inlet orifice to the mass spectrometer (the optimal location that maximizes the signal response); a voltage of 1.5 kV was supplied to the emitter tip to conduct nanoelectrospray, providing a flow rate which has been determined to be about 0.1 μL/min. The emitter tip was repositioned at its optimal location for each repeated analysis. The source temperature was set to 80 °C, and the sample cone voltage was set within the 20–50 V range. Spectra were acquired at 6 s/scan over a mass range of m/z 50–1200 with an acquisition time of 3 min. For MS/MS measurements, the collision-induced dissociation of cluster ions was performed with argon; the collision gas pressure was 2 × 10$^{-3}$ mbar. The spectra were obtained at different collision energies ranging from 5 to 30 eV.

3. Results and Discussion

Thermodynamic Equations. The stepwise formation constants for the monosulfate and disulfate complexes of the M$^{3+}$/f element are

$$\beta_1 = \frac{[\text{MSO}_4^+]}{[\text{M}^{3+}] [\text{SO}_4^{2-}]}$$
(1)

and

$$K_2 = \frac{[\text{M(SO}_4^{2-}^2)]}{[\text{MSO}_4^+][\text{SO}_4^{2-}]}$$
(2)

respectively. The stability of the M(SO$_4^{2-}$)2 complex is equivalently defined by the overall stability constant

$$\beta_2 = \beta_1 K_2$$

* Uncertainty depends on the estimation method. For analogy, (α2+0.05)$^{1/2}$ kg mol$^{-1}$ where σ is the original uncertainty; for correlation, it is calculated from the standard error of parameters in the linear regression. The concentration of the free SO$_4^{2-}$ ion was extrapolated to zero ionic strength, K_b, was calculated with the SIT formula

$$\log K^b = \log K_m - \sum_{i<j} \epsilon_{ij} m_j$$
(3)

where the subscript m denotes the molality scale, and K_m is related to K through molal-to-molar conversion factors. $D = 0.509 l_m^{1/2}/(1 + 1.5 l_m^{1/2})$ is the Debye–Hückel term, l_m is the ionic strength (mol kg$^{-1}$), and Δz^2 is calculated from the charges of the species of the corresponding equilibrium (the values are typically −12, −4, and −16 for β_1, K_2, and β_2, respectively). ϵ_{ij} is an empirical ion pair interaction coefficient for the pair of species i and j; ϵ_{ij} is assumed to equal to zero for ions of same charge sign. Numerical values of ϵ_{ij} were taken from the literature (Table 2), when available, or obtained as explained below. m_j is the molal concentration of the species j. The concentration of the free SO$_4^{2-}$ ligand was calculated with eq 4 when the concentrations of Ln(III) sulfate complexes were negligible in the mass balance of sulfate, that is, for the Eu(III) experiments, where the effect of metal complexation on [SO$_4^{2-}$] was finally calculated to be less than 0.5%:

$$[\text{SO}_4^{2-}] = \frac{[\text{SO}_4^{2-}_0]}{1 + K_b[I^+]}$$
(4)

where [SO$_4^{2-}_0$] is the total sulfate concentration.

$$K_b = \frac{[\text{HSO}_4^-]}{[\text{SO}_4^{2-}][\text{H}^+]}$$
(5)

Table 2. SIT Coefficients at 25 °C

<table>
<thead>
<tr>
<th>ϵ</th>
<th>$\log K^b$</th>
<th>Method</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\epsilon_{\text{Eu}^{3+}/\text{SO}_4^{2-}}^+$</td>
<td>0.14 ± 0.02</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>$\epsilon_{\text{La}^{3+}/\text{SO}_4^{2-}}$</td>
<td>0.07 ± 0.01</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>$\epsilon_{\text{H}^+/\text{HSO}_4^-}$</td>
<td>0.10 ± 0.06</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>$\epsilon_{\text{La}^{3+}/\text{SO}_4^{2-}}^+$</td>
<td>−0.03 ± 0.06</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>$\epsilon_{\text{La}^{3+}/\text{SO}_4^{2-}}$</td>
<td>−0.01 ± 0.02</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>$\epsilon_{\text{Na}^+/\text{Na}_2\text{SO}_4}$</td>
<td>−0.12 ± 0.06</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>$\epsilon_{\text{La}^{3+}/\text{SO}_4^{2-}}^+$</td>
<td>0.47 ± 0.03</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>$\epsilon_{\text{La}^{3+}/\text{SO}_4^{2-}}$</td>
<td>0.49 ± 0.03</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>$\epsilon_{\text{La}^{3+}/\text{SO}_4^{2-}}^+$</td>
<td>0.26 ± 0.14</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>$\epsilon_{\text{La}^{3+}/\text{SO}_4^{2-}}$</td>
<td>0.31 ± 0.14</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>$\epsilon_{\text{La}^{3+}/\text{SO}_4^{2-}}^+$</td>
<td>0.86 ± 0.5</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>$\epsilon_{\text{La}^{3+}/\text{SO}_4^{2-}}$</td>
<td>0.509</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

* Uncertainty depends on the estimation method. For analogy, (α2+0.05)$^{1/2}$ kg mol$^{-1}$ where σ is the original uncertainty; for correlation, it is calculated from the standard error of parameters in the linear regression. The concentration of the free SO$_4^{2-}$ ligand was calculated with eq 4 when the concentrations of Ln(III) sulfate complexes were negligible in the mass balance of sulfate, that is, for the Eu(III) experiments, where the effect of metal complexation on [SO$_4^{2-}$] was finally calculated to be less than 0.5%:

$$[\text{SO}_4^{2-}] = \frac{[\text{SO}_4^{2-}_0]}{1 + K_b[I^+]}$$
(4)

where [SO$_4^{2-}_0$] is the total sulfate concentration.

$$K_b = \frac{[\text{HSO}_4^-]}{[\text{SO}_4^{2-}][\text{H}^+]}$$
(5)

Figure 1. Dependence of log $K_{b,m}$ on the ionic strength, I_m, at 25 °C. The thin and bold continuous lines represent fits to experimental values (open circles) selected in refs 44 and 42, respectively, with a simplified SIT formula for a NaClO4 medium (eq 6). Values were also calculated with the SIT formula for each of our solutions accounting for the proportions of ionic constituents (cross and black circles). For comparison, extrapolation of log $K_{b,m}$ to high ionic strengths is shown (dotted line) for a H2SO4 medium where HSO4- predominates.

strength had already been proposed by Grenthe et al. on the basis of four sets of experimental values in solutions with NaClO4 as a supporting electrolyte;44 in this case, eq 3 simplifies as

$$\log K_{b,m} = \log K_b^0 - 4D - \Delta \epsilon \text{NaClO}_4$$

which was found to be reliable (Figure 1), and resulted in $K_b^0 = 1.985 \pm 0.084$ and $\Delta \epsilon = (0.005 \pm 0.051) \text{ kg mol}^{-1}$. In our work, some of the solutions contained significant amounts of the Na2SO4 salt, so that the simplified SIT formula (eq 6) was not well adapted. The SIT term was thus developed to account for interactions with the main ions in the solutions (i.e., Na+, ClO4-, and SO42- for $-\log[H^+] > 3$). The corrected log $K_{b,m}$ values slightly deviated from those in a pure NaClO4 medium when SO42- was not negligible against ClO4- and for $I_m > 0.5 \text{ mol kg}^{-1}$ (Figure 1).

Conversely, this correction was found to be negligible for the HClO4/H2SO4 and HNO3/H2SO4 working solutions for which $I_m < 0.1 \text{ mol kg}^{-1}$ and $-\log[H^+] > 1$. Figure 1 also illustrates the case of the H2SO4 solutions without any supporting electrolyte: the calculated values deviate from the case with NaClO4 only when $I_m > 0.3 \text{ mol kg}^{-1}$ (i.e., when $-\log[H^+] < 0.5$). In this case, the SIT term, $\sum \epsilon_{i,j} m_j$ (eq 3), had a much smaller effect on the log $K_{b,m}$ values than the Debye–Hückel contribution, $\Delta \epsilon^2 D$. For the experiments at a pH lower than 2 and low ionic strength, a more significant effect originated from the determination of the ligand concentrations from pH measurements according to eq 4. Indeed, when pH was measured instead of $-\log[H^+]$, K_b was corrected for γ_{H^+}, the activity coefficient of H^+ calculated as

$$\log \gamma_{H^+} = -D + \epsilon_{H^+, \text{ClO}_4^-} m_{\text{ClO}_4^-} + \epsilon_{H^+, \text{NO}_3^-} m_{\text{NO}_3^-} + \epsilon_{H^+, \text{HSO}_4^-} m_{\text{HSO}_4^-} + \epsilon_{H^+, \text{SO}_4^{2-}} m_{\text{SO}_4^{2-}}$$

We evaluated the unknown value of $\epsilon_{H^+, \text{HSO}_4^-}$ by correlating the available ϵ_{M^+, X^-} values with the published ϵ_{Na^+, X^-} values42 or with those calculated from the well-known corresponding Pitzer coefficients:45 $\epsilon_{H^+, \text{HSO}_4^-} = \epsilon_{\text{Na}^+, \text{HSO}_4^-} + (0.11 \pm 0.05)$. The H^+ activity coefficient on log K_b ranged from 0.04 to 0.06 (from 0.02 to 0.03 on log[SO42-]).

ESI-MS Results for La(III). Ln(III) complexes are usually classified as kinetically labile on the basis of the fast formation and dissociation rate constants that reflect the strong ionic nature of f-element bonding. The kinetics of formation of the LnSO4+ complexes have been examined by sound absorption techniques from which stability constants were obtained for La and Eu (Table 1);18,25 these studies have shown high rate constants for the formation of an inner-sphere complex from the outer-sphere complex ($k_f = 1.0-3.4 \times 10^8 \text{ s}^{-1}$), as well as for its dissociation ($k_d = 2-7 \times 10^7 \text{ s}^{-1}$). Nevertheless, there is increasing acceptance of the idea that the speciation of kinetically labile species can be maintained on the time scale of the ESI process; for instance reliable formation constants were reported for metal complexes with $k_f \approx 10^5-10^9 \text{ s}^{-1}$.46 In previous studies, it has been shown that formation constants of lanthanide and actinide complexes can be directly determined by monitoring the ion intensities of all the gas-phase metal species originated from the free and complexed aqueous species.36,37 This procedure was also used in the present study. The positive-ion mode was required for the detection of positively charged clusters induced by La3+(aq) and LaSO42+(aq). La(SO4)3−(aq) was however likely to produce negatively charged clusters in the gas phase, for which the negative-ion mode was required. Simultaneous detection of positive and negative gas-phase ions was not possible with the current instrumentation; consequently, it was also not possible to make any direct comparison of the intensities measured in the two detection modes. For this reason, the experimental conditions were chosen so that La3+(aq) and LaSO42+(aq) were preferentially formed with negligible concentrations of the disulfate complex. Nevertheless, this latter species was formed at the higher sulfate concentrations obtained by increasing the H2SO4 concentration, thereby decreasing the pH from about 2 to 1. The species identified in the nanoESI-MS spectra are summarized in Table 3. MS/MS experiments have been used to probe the molecular ions generated by nanoESI (Table S1, Supporting Information). The assignments reported in Table 3 agree with the detected daughter ions observed in representative MS/MS spectra and the corresponding mass loss.

The quantitative analysis of the La(III) speciation was achieved under relatively mild ion-source energy (ion-cluster mode). Figure 2 shows a representative nanoESI mass spectrum obtained in the positive-ion mode for an aqueous solution containing 10^-3 M La(NO3)3 and a 2-fold molar ratio of SO42- at pH 2. Whereas the [La(H2O)6]3+(aq) ion is known to be the predominant species in the aqueous phase at pH 2, it was detected in the spectra as oxides, hydroxides, and La3+.

clusters (Table 3). The hydroxide ions [LaOH(H2O)n]2+ and oxide ions [LaO(H2O)n]2- were observed. The MS/MS spectra confirmed the assignments, where the loss of water molecules from the solvation shell is the major fragmentation pathway for these ions (Table S1). The oxide ions are the predominant species throughout the spectra. One can also observe that the high nitrate content of the solutions promotes the formation of oxide ions that retain HNO3 during the gas-phase ion formation, such as [LaO(H2O)(HNO3)]+ and [LaO(HNO3)]2+. The likely species, [La(NO3)2(H2O)n]-, involving the nitrate anions have also been identified by MS/MS analyses. For instance, the MS/MS spectrum of the [La(NO3)2(H2O)]+ ion shows that this ion readily lost H2O or decomposed under higher-energetic conditions to give an oxide ion, [LaO(HNO3)]+. The analysis of these species to evaluate La(III) complexation by nitrate is not straightforward. Because nitrate complexation is not very strong (log \(\beta_1 \) slightly more than 1), the association of the La2+ analyte ion with the not very volatile NO3- ligand may occur either in the aqueous solution or during the solution-to-gas-phase transition leading to nonspecific binding (cluster formation). Generally, f elements are not expected to form aqueous complexes with perclorurate anions, while inner-sphere nitrate complexes have been proposed. Hence, complexation by nitrate was accounted for by calculating the molar fraction of the LaNO32+(aq) species in the aqueous solution. This was determined from thermodynamic calculations using data for the analogue Am(III): log \(\beta_1^{\text{AmNO}_3^{2+}} \) = 1.33 ± 0.20. The contribution of LaNO32+(aq) in La(III) speciation was found to be less than 14 and 6% for pH 1 and 2, respectively. As indicated below, this contribution has been taken into consideration in the analysis of the MS data. The weak influence of nitrate complexes at pH 2 was also supported by the TRLIL results for equivalent HNO3/H2SO4 solutions of Eu(III): the luminescence spectra did not significantly differ from those for the HClO4/H2SO4 solutions.

For the monosulfate complex, LaSO42+(aq), the ions observed in the mass spectra correspond to [La(SO4)(H2O)n]+, as well as to mixed-solvent clusters, [La(SO4)(H2O)n(HNO3)]+ and [La(SO4)2(H2O)n(H2SO4)n]+. The effect of the nonspecific binding of SO42- during the ES desolvation process is expected to be smaller than that of the complexation in the aqueous solution, and we assumed that it could be neglected as a first approximation. The MS/MS spectra showed that these species dissociate by losing the solvent molecules that surround the LaSO4+ ion (Table S1). Furthermore, it was found that under high-energetic conditions, fragmentation of the [La(SO4)(H2O)n]+ and [La(SO4)2(H2O)n(HNO3)]+ complexes leads to the [LaO(H2O)]+ and [LaO(HNO3)]+ oxide species, respectively.

The efficiency of the conversion to ions in the gas-phase is likely to be similar for the various species, as already observed from ion intensity measurements. The detection yields are also likely to be similar for the monocharged gas-phase ions in the 120-500 m/z range. Consequently, the summation of the ionic currents of the gas-phase species (Table 3) was assumed to be proportional to the aqueous concentrations of either the free ion or the monosulfate complex. The ratio \(R = [\text{LaSO}_4^+(\text{aq})]/[\text{La}^{3+}(\text{aq})] \) was thereby calculated after \([\text{La}^{3+}(\text{aq})] \) was corrected for the weak nitrate complexation by subtracting the calculated concentration of LaNO32+(aq), which only slightly increased the \(R \) values. The equilibrium constant \(\beta_1 \) was determined from the mass action law

\[
\log R = \log \beta_1 + \log [\text{SO}_4^{2-}] \tag{8}
\]

and the equilibrium concentration of SO42- (aq)

\[
[\text{SO}_4^{2-}] = \frac{[\text{SO}_4^{0} - [\text{La}][\text{R}]/[\text{R}+1]}{1 + K_1[\text{H}^+]^2} \tag{9}
\]

For the 10⁻³ M and 5 × 10⁻⁴ M La(III) solutions, the plot log \(R \) versus log [SO42-] had a straight line of slope +1 and intercept of log \(\beta_1 \), according to eq 8 (Figure 3). The +1 slope reflects the 1:1 stochiometry of the aqueous complex, which is good indication that we made reasonable assumptions for the quantitative interpretation of the MS data. For the twice-diluted La(III) solutions at 5 × 10⁻⁴ M, whereas two of the data points were consistent with the model, two others significantly deviated, which was attributed to very low ion intensities, close to the detection limits, thus influencing the determination of \(R \). In a few solutions with the highest [SO42-], the formation of La(SO4)2+(aq) was suspected and actually detected using the negative-ion mode (Figure S1, Table S2). As the consumption of SO42- from the formation of La(SO4)2+(aq) was neglected in eq 9 because it could not be properly calculated, the corresponding experimental data points were expected to deviate from the model toward elevated [SO42-] as observed for [SO42-] > 0.01 M. This effect was even more stressed than expected, possibly because of the higher uncertainties on \([\text{La}^{3+}(\text{aq})] \) determined from peaks of low ion intensities; the La3+(aq) concentration actually became lower than about 13% of the total lanthanum concentration under these conditions.

Linear regression analysis of the nanoESI-MS data provided intercepts 3.0 ± 0.2 and 2.9 ± 0.3 for pH 1 and 2, respectively (±1.96 × \(\sigma \), where \(\sigma \) is the standard deviation). The correction for nitrate complexation was only significant for pH 1: \(\log \beta_1 = 3.1 ± 0.3 \) (Figure 3). A good agreement between the log \(\beta_1 \) values was observed within uncertainties.
although a slight difference should be expected because of
the difference in the ionic strengths. The log β_1 values
were extrapolated to $I = 0$ using the simplified SIT formula

$$\log \beta_1^I = \log \beta_{1,m} + 12D + \Delta \epsilon_{m}$$

as the influence of the ion pair term ($\Delta \epsilon_{m}$) was small for $I < 0.1$ M. This term associated to the complexation reaction
was taken to be $(\epsilon_{LaSO_4^-} - \epsilon_{LaSO_4^-})m_{LaSO_4^-} - \epsilon_{La^{3+}SO_4^{2-}} m_{La} \approx -0.06 \pm 0.1$ (Table 2). This definition is consistent with a predominance of HSO$_4^-$, which is a rough approximation because, in addition to HSO$_4^-$, the solutions also contained the NO$_3^-$ and SO$_4^{2-}$ counteranions. However, the assumption was found to be relevant because the $|\Delta \epsilon_{m}|$ term was calculated to be less than 0.03 and did not significantly influence the calculations. Ionic strength corrections, log $\beta_1^I - \log \beta_{1,m}$ were calculated from eq 10 and were found to equal 1.32 \pm 0.03 and 0.60 \pm 0.01 for $I = 0.1$ and 0.01 M, respectively, which corresponds to pH 1 and 2, respectively. Hence, log β_1^I was calculated as 4.4 \pm 0.3 and 3.5 \pm 0.3 from the two series of experiments. The too-high log β_1^I value of 4.4 \pm 0.3 compared to other data (Table 1) was thought to result from nonspecific binding during the ESI desolvation process because the sulfate concentrations in the solutions at pH 1 were higher than those in the solutions at pH 2. The value determined by nanoESI-MS from the dilute solutions at pH 2 is presented with other published values for La(III) in Table 1. Direct comparison is only possible for the data extrapolated to $I = 0$ for which the agreement is good. The values obtained by different workers from conductimetry are about 3.6 while a calorimetric study provided 3.5. Another value reported in a potentiometric study, is about 0.3 log unit higher than the nanoESI-MS value. The uncertainty of ± 0.3 is larger than those proposed from other techniques (Table 1). This is mainly the result of the difficulty in making quantitative measurements for the La$^{3+}$ aquo ion in solutions without organic solvents. However, the quantitative agreement demonstrates the potential of nanoESI-MS for kinetically labile species. Within its uncertainty, the MS value of 3.5 \pm 0.3 lies between the data selected by Silva et al. (3.85 \pm 0.03) for Am(III)9 and the one (3.30 \pm 0.15) for Cm(III)10 and cannot really help to discuss these values.

TRLIL Results for Eu(III). The evolution of the fluorescence spectrum is presented in Figure 4 for increasing sulfate concentrations ([SO$_4^{2-}$] = 0–0.2 M in Na$_2$SO$_4$/NaClO$_4$ aqueous media at $I = 0.50$–0.70 M and 3 $< -\log$ [H$^+$] < 3.9). Spectroscopic features of uncomplexed Eu(III) in aqueous perchlorate medium have been emphasized in extensive studies of solution chemistry of europium.32a,48 The TRLIL spectrum of the Eu$^{3+}$ aquo ion presents four characteristic bands centered at 593, 618, 650, and 700 nm corresponding to radiative transitions from the 5D_0 excited state to the 7F_1, 7F_2, 7F_3, and 7F_4 ground-state manifold, respectively. The strongest transitions are $^5D_0 \rightarrow ^7F_{2,4}$ while $^5D_0 \rightarrow ^7F_3$ is weaker because it is forbidden according to Laporte’s selection rules. The $^5D_0 \rightarrow ^7F_2$ transition (electric dipole) exhibits hypersensitivity and can be used as a luminescence probe for complexation analyses; its intensity increases much more than those of other transitions upon complexation. Interestingly, the nondegenerated $^5D_0 \rightarrow ^7F_0$ transition at 580 nm only occurs when the local symmetry of Eu$^{3+}$ is low, particularly when there is no inversion center, so it shows inner-sphere complex formation.

While the sulfate concentration was increased, the hypersensitive transition peak at 618 nm changed more significantly in intensity and position than other peaks (Figure 4): a slight shift (about 2 nm) of its maximum toward the low wavelengths was observed. These spectral changes were attributed to the formation of the sulfate complexes of Eu(III). The enhancements of the peaks at 593 and 700 nm likely indicate that at least one of the Eu(III) species has either a higher luminescence quantum yield or a higher absorption coefficient than Eu$^{3+}$ at the 395 nm excitation

wavelength. The detection of the $^3\text{D}_0 \rightarrow ^7\text{F}_0$ emission at 580 nm is consistent with complex formation.

The quantitative analysis of the TRLIL spectra was based on the intensity changes of the hypersensitive transition peak. The measured intensity, I_{mes}, was normalized (I_{norm}) in relation to [Eu], the total europium concentration, and R_0, the molar fluorescence intensity of Eu$^{3+}$. As for classical spectrophotometry, the change of the Eu(III) emission was described with the theoretical expression

$$I_{\text{norm}} = \frac{I_{\text{mes}}}{[\text{Eu}] R_0} = \frac{\sum_{i \in 2} (I_i \beta_i [\text{SO}_4^{2-}])}{\sum_{i \in 2} (\beta_i [\text{SO}_4^{2-}])}$$

where $I_i = I_i R_0$ and I_i is the molar fluorescence intensity of Eu(SO$_4$)$_3$. According to the SIT formula, the dependences of the formation constants on the ionic strength are

$$\log \beta_1,\text{em} = \log \beta_1^{2} - 12D - \Delta_1(\text{em})$$
$$\log K_2,\text{em} = \log K_2^{3} - 4D - \Delta_2(\text{em})$$

The SIT terms, $\Delta_1(\text{em})$ and $\Delta_2(\text{em})$, are related to the interactions with the ionic components of the solutions. Some of the ϵ values involved in $\Delta_1(\text{em})$ and $\Delta_2(\text{em})$ were available in the literature or estimated by analogy to other M$^{3+}$ cations, while $\epsilon_{\text{Eu}^{2+},\text{SO}_4^{2-}}$, $\epsilon_{\text{Eu}^{3+},\text{SO}_4^{2-}}$, $\epsilon_{\text{Eu}^{3+},\text{HSO}_4^{-}}$, $\epsilon_{\text{Eu}^{3+},\text{SO}_4^{2-},\text{HSO}_4^{-}}$, and $\epsilon_{\text{H}^{+},\text{Eu}^{3+}}$ were unknown (Table 2). The determination of these latter parameters with the curve-fitting technique turned out to be not relevant because their influence on the ionic strength corrections was not high compared to the mean Δe value in a simplified SIT formula. Hence, we found it better to estimate them using correlations as already proposed. For a given anion X$^-$, $\epsilon_{\text{M}^{3+},\text{X}^-}$ were found to correlate linearly with γ_M^{3+} where γ_M^{3+} is the ion radius of M$^{3+}$. Hence, to determine $\epsilon_{\text{Eu}^{2+},\text{SO}_4^{2-}}$, we calculated $\epsilon_{\text{K}^{+},\text{SO}_4^{2-}}$, $\epsilon_{\text{Na}^{+},\text{SO}_4^{2-}}$, $\epsilon_{\text{Li}^{+},\text{SO}_4^{2-}}$, and $\epsilon_{\text{H}^{+},\text{SO}_4^{2-}}$ from the Pitzer

(49) $\Delta_1(\text{em}) = (\epsilon_{\text{Eu}^{3+},\text{HSO}_4^{-}} - \epsilon_{\text{Eu}^{3+},\text{SO}_4^{2-}}) \gamma_{\text{M}^{3+}} + (\epsilon_{\text{Eu}^{3+},\text{HSO}_4^{-}} - \epsilon_{\text{Eu}^{3+},\text{SO}_4^{2-}}) \gamma_{\text{M}^{3+}} - \epsilon_{\text{H}^{+},\text{SO}_4^{2-}} \gamma_{\text{M}^{3+}}$. $\Delta_2(\text{em}) = (\epsilon_{\text{Eu}^{3+},\text{HSO}_4^{-}} - \epsilon_{\text{Eu}^{3+},\text{SO}_4^{2-}}) \gamma_{\text{M}^{3+}} - \epsilon_{\text{H}^{+},\text{SO}_4^{2-}} \gamma_{\text{M}^{3+}} - \epsilon_{\text{H}^{+},\text{SO}_4^{2-}} \gamma_{\text{M}^{3+}} - \epsilon_{\text{H}^{+},\text{SO}_4^{2-}} \gamma_{\text{M}^{3+}}$

Figure 4. TRLIL spectra of Eu(III) with $-4.1 < \log[\text{SO}_4^{2-}] < -1.6$, in Na$_2SO_4$/NaClO$_4$ aqueous solutions with $I = 0.5$ M at $-\log[H^+] > 3$ and 23 °C.
and the resulting curves better described the three sets of experiments. Model C was thus found to be more relevant suggesting that EuSO$_4^{+}$ and Eu(SO$_4$)$_2^{-}$ formed, each species being defined by a specific I_R value. The fit with Model C finally resulted in log β_1 = 3.78 ± 0.1 and log K_2 = 1.5 ± 0.2 and the relative intensities at 618 nm, I_1 = 2.6 ± 0.1 and I_2 = 5.6 ± 0.3. A possible further complex, Eu(SO$_4$)$_3^{3-}$, was insignificant under these conditions. The speciation diagrams are presented in Figure 5b for the three sets of ionic conditions. As expected, EuSO$_4^{+}$ was the major species (>70%) at low ionic strength (I = 0.02 M) in relation to the Eu$^{3+}$ aquo ion, which was better stabilized at higher I. The formation of Eu(SO$_4$)$_2^{-}$ was observed when the sulfate concentration was increased and was even the major complex (~60%) at moderate ionic strength (I = 0.55 M).

The formation constants are reported in Table 1 with other published values for Eu(III). The values at zero ionic strength show a good agreement between our TRLIL data and the ones obtained by other techniques, such as sound absorption, electrophoresis, and solvent extraction, despite the scattering of the log K_2 values from the literature for a given ionic strength. Interestingly, our results also agree well with the data for Am(III) and Cm(III) obtained by solution-based methods, but are significantly higher than those for Cm(III) obtained by TRLIL. No explanation can be reasonably offered for this latter observation, except that the studies were carried out in different ionic media (NaClO$_4$ vs NaCl).

This, however, should not be responsible of such differences, unless medium effects favored ion pairing, which is unlikely. Figure 6 illustrates the ionic strength dependence of β_1 up to 2 M for a NaClO$_4$ medium. The log β_1 values determined by nanoESI-MS and TRLIL, as well as the published data for the La(III) and Eu(III), are consistent with the SIT formula for a NaClO$_4$ electrolyte. Some of our experimental values deviate because we accounted for short-range interactions with SO$_4^{2-}$, as in the calculation of K_2. Thus, these data were naturally closer to the SIT curve corresponding to a hypothetical pure Na$_2$SO$_4$ medium. The fitted value of $\epsilon_{Eu^{3+}SO_4^{2-}}$ was found to be 0.88 ± 0.5 and was associated with a large uncertainty because it only influenced the data for log[SO$_4^{2-}$] > −1. We obtained the first estimation to our knowledge for a SIT coefficient between multicharged species.

The specific luminescence spectra for Eu$^{3+}$, EuSO$_4^{+}$, and Eu(SO$_4$)$_2^{-}$ for $\lambda_{\text{excitation}}$ = 395 nm at 23 °C.

Figure 5. TRLIL data analysis at 23 °C. (a) Normalized relative intensity, I_{norm}, at 618 nm against log[SO$_4^{2-}$], measured for Eu(III) aqueous solutions with different ionic conditions; the theoretical curves are fitted to the data according to three different models (see text): assuming the formation of EuSO$_4^{+}$ from Eu$^{3+}$ (model A), and adding Eu(SO$_4$)$_2^{-}$ as outer-sphere (model B) or outer- and inner-sphere (model C) complexes. (b) Speciation diagrams of Eu(III) for the 3 sets of ionic conditions.

Figure 6. Experimental values of log β_1 against the ionic strength, I_m, for the formation of LaSO$_4^{+}$ and EuSO$_4^{+}$. The data determined in this work (solid symbols) are compared to literature data reported in Table 1 (open symbols). The dependence on I_m is calculated using the simple SIT formula (eq 10) and ϵ_{ij} values (Table 2) when NaClO$_4$ (continuous line) or Na$_2$SO$_4$ (dotted line) predominates as supporting electrolytes.

Figure 7. TRLIL spectra of Eu$^{3+}$, EuSO$_4^{+}$, and Eu(SO$_4$)$_2^{-}$ for $\lambda_{\text{excitation}}$ = 395 nm at 23 °C.
suggesting that the yield of the radiative de-excitation processes is the same, whereas the overall emission for Eu(SO$_4$)$_2^{2-}$ is more intense, which is likely caused by better absorption at 395 nm. As already noted, the detection of fluorescence at 580 nm reveals changes of the symmetry of the hydrated Eu(III) indicating the replacement of one or more water molecules with one or two sulfate ions in the primary coordination sphere. The EuSO$_4^{+}$ and Eu(SO$_4$)$_2^{2-}$ species were characterized for their first coordination-sphere environment through lifetime measurements. As previously demonstrated, it is possible to correlate the primary hydration number of europium (N_{H_2O}) and the lifetime of its 5D_0 emitting level (τ). Such a correlation was reported by Kimura and Choppin, $N_{H_2O} = 1070/\tau - 0.62$, providing hydration numbers with an uncertainty of ±0.5. Indeed, the lifetime measured for Eu(III) in a 0.01 M HClO$_4$ solution is 110 ± 10 µs which indicates the presence of nine water molecules in the internal coordination sphere of the Eu$^{3+}$ aqo ion, while a hydration number between 8 and 9 is expected. In all of the solutions, the emission decay was treated with a single-exponential curve. The corresponding lifetimes slowly increased with the formation of the mono- and disulfate complexes. Hydration numbers were calculated from several lifetime measurements (Table 4) and were interpreted as averages of the hydration numbers of Eu$^{3+}$, EuSO$_4^{+}$, and Eu(SO$_4$)$_2^{2-}$ weighted by their concentrations in the solution. These hydration numbers indicate the number of water molecules replaced by SO$_4^{2-}$ for each species. When the monosulfate complex is predominant (0.01 M H$_2$SO$_4$ solution where metal speciation is 19.4% Eu$^{3+}$, 74.0% EuSO$_4^{+}$, and 6.6% Eu(SO$_4$)$_2^{2-}$), τ was measured to be 123 ± 10 µs (i.e., 8.1 ± 0.5 remaining water molecules). When the sulfate concentration is increased to 0.3 M, the predominant species is the disulfate complex (0.3 M Na$_2$SO$_4$ solution where metal speciation is 7.9% Eu$^{3+}$, 36.8% EuSO$_4^{+}$, and 55.3% Eu(SO$_4$)$_2^{2-}$), and τ was 133 ± 10 µs (i.e., 7.4 ± 0.5 remaining water molecules). Considering the different possible hydration numbers for each species, we found the most reliable set of values to be 9, 8, and 7 for Eu$^{3+}$, EuSO$_4^{+}$, and Eu(SO$_4$)$_2^{2-}$, respectively, according to the speciation results. This is consistent with a mechanism where each sulfate molecule entering the internal coordination sphere of europium is likely to exclude one water molecule from the primary hydration sphere, suggesting that the sulfate ion acts as a monodentate ligand in aqueous solution. The same conclusion was previously made from sound absorption measurements. The SO$_4^{2-}$ substitution rates with lanthanides reported from these measurements are about 10^{-7} to 10^{-8} s$^{-1}$; since these values are close to those found for water exchange, they have been interpreted as being indicative of the monodentate nature of SO$_4^{2-}$ binding. For instance, the exchange rates of acetate (CH$_3$COO$^-$) substitution are 2 orders of magnitude slower and were taken to be characteristic of a bidentate interaction. The ratio of inner- to outer-sphere monosulfate complexes of lanthanides and actinides has been previously examined. It is noteworthy that the interpretation of the luminescence spectra obtained in this study does not exclude the formation of outer-sphere complexes. Several authors have discussed differences of the stability constants of lanthanide complexes determined by spectrophotometric and solution-based methods; they concluded that only the formation constant of inner-sphere complexes could be measured by spectrophotometric techniques. This belief was found to be not consistent with thermodynamics, when equilibrium is achieved between the inner- and outer-sphere complexes.

Table 4. Speciation Results and Measured Fluorescence Lifetimes of Eu(III) Aqueous Solutions at 23 °C

<table>
<thead>
<tr>
<th>[Na$^+$] (M)</th>
<th>$\log K_b$</th>
<th>$-\log[H^+]$ (calculated)</th>
<th>log[SO$_4^{2-}$]</th>
<th>Eu$^{3+}$</th>
<th>EuSO$_4^{+}$</th>
<th>Eu(SO$_4$)$_2^{2-}$</th>
<th>τ (µs)</th>
<th>N_{H_2O}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>2.00</td>
<td>-</td>
<td>-</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>110</td>
<td>9.0</td>
</tr>
<tr>
<td>0.50</td>
<td>1.30</td>
<td>3.07</td>
<td>-6.71</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>113</td>
<td>8.8</td>
</tr>
<tr>
<td>1.94</td>
<td>1.15</td>
<td>3.05</td>
<td>-1.98</td>
<td>79.0</td>
<td>19.0</td>
<td>2.0</td>
<td>112</td>
<td>8.9</td>
</tr>
<tr>
<td>0.50</td>
<td>1.30</td>
<td>3.08</td>
<td>-2.12</td>
<td>67.4</td>
<td>30.5</td>
<td>2.1</td>
<td>117</td>
<td>8.5</td>
</tr>
<tr>
<td>1.89</td>
<td>1.14</td>
<td>3.07</td>
<td>-1.68</td>
<td>63.9</td>
<td>30.0</td>
<td>6.2</td>
<td>113</td>
<td>8.8</td>
</tr>
<tr>
<td>0.50</td>
<td>1.29</td>
<td>3.08</td>
<td>-1.94</td>
<td>58.0</td>
<td>38.1</td>
<td>3.9</td>
<td>118</td>
<td>8.4</td>
</tr>
<tr>
<td>1.84</td>
<td>1.14</td>
<td>3.08</td>
<td>-1.49</td>
<td>52.1</td>
<td>36.6</td>
<td>11.2</td>
<td>119</td>
<td>8.4</td>
</tr>
<tr>
<td>0.50</td>
<td>1.29</td>
<td>3.09</td>
<td>-1.73</td>
<td>45.5</td>
<td>46.8</td>
<td>7.6</td>
<td>120</td>
<td>8.3</td>
</tr>
<tr>
<td>0.51</td>
<td>1.29</td>
<td>3.10</td>
<td>-1.66</td>
<td>41.2</td>
<td>49.3</td>
<td>9.5</td>
<td>121</td>
<td>8.2</td>
</tr>
<tr>
<td>0.51</td>
<td>1.28</td>
<td>3.12</td>
<td>-1.46</td>
<td>30.3</td>
<td>53.8</td>
<td>15.9</td>
<td>123</td>
<td>8.1</td>
</tr>
<tr>
<td>0.52</td>
<td>1.26</td>
<td>3.15</td>
<td>-1.20</td>
<td>19.4</td>
<td>53.7</td>
<td>26.8</td>
<td>126</td>
<td>7.9</td>
</tr>
<tr>
<td>0.50</td>
<td>1.65</td>
<td>1.83</td>
<td>-2.22</td>
<td>19.5</td>
<td>74.0</td>
<td>6.6</td>
<td>123</td>
<td>8.1</td>
</tr>
<tr>
<td>1.41</td>
<td>1.12</td>
<td>3.23</td>
<td>-0.90</td>
<td>19.3</td>
<td>42.4</td>
<td>38.3</td>
<td>127</td>
<td>7.8</td>
</tr>
<tr>
<td>1.30</td>
<td>1.11</td>
<td>3.28</td>
<td>-0.83</td>
<td>16.6</td>
<td>41.5</td>
<td>41.9</td>
<td>129</td>
<td>7.7</td>
</tr>
<tr>
<td>0.53</td>
<td>1.23</td>
<td>3.22</td>
<td>-0.98</td>
<td>13.2</td>
<td>49.4</td>
<td>37.4</td>
<td>129</td>
<td>7.7</td>
</tr>
<tr>
<td>0.40</td>
<td>1.26</td>
<td>3.22</td>
<td>-1.00</td>
<td>10.9</td>
<td>50.5</td>
<td>38.6</td>
<td>130</td>
<td>7.6</td>
</tr>
<tr>
<td>0.55</td>
<td>1.20</td>
<td>3.30</td>
<td>-0.84</td>
<td>10.5</td>
<td>45.4</td>
<td>44.0</td>
<td>132</td>
<td>7.5</td>
</tr>
<tr>
<td>0.50</td>
<td>1.18</td>
<td>3.44</td>
<td>-0.70</td>
<td>8.1</td>
<td>41.4</td>
<td>50.4</td>
<td>133</td>
<td>7.4</td>
</tr>
<tr>
<td>0.60</td>
<td>1.11</td>
<td>3.89</td>
<td>-0.52</td>
<td>7.9</td>
<td>36.8</td>
<td>55.3</td>
<td>133</td>
<td>7.4</td>
</tr>
</tbody>
</table>

inner-sphere complexes, the actual measured formation constant is the sum of the formation constants for the inner- and outer-sphere species, $\beta_{i,j}^{(0)} = \beta_{i,j}^{(in)} + \beta_{i,j}^{(out)}$, because of the equilibrium between the two complexes (see Appendix). This conclusion was also confirmed by Hale and Spedding from their UV absorption study dealing with the formation of EuSO$_4^{2-}$. For instance, DeCarvalho and Choppin have determined the formation constant of EuSO$_4^{2-}$ in 2 M NaClO$_4$ solutions by potentiometry (log β_1 = 1.37 ± 0.08) and solvent extraction techniques (log β_1 = 1.38 ± 0.06),23 these values are in good agreement with our TRLIL value at the same ionic strength (log β_1 = 1.36 ± 0.1).

4. Conclusion

Sulfate complexation of La(III) and Eu(III) has been investigated for the first time to our knowledge by nano-electrospray ionization mass spectrometry and time-resolved laser-induced luminescence. From the interpretation of luminescence lifetimes, the sulfate anion was concluded to exchange with a single water molecule of the first coordination sphere, suggesting it is a monodentate ligand toward trivalent f-element cations. NanoESI-MS provided a relevant stability constant for the labile LaSO$_4^{2-}$ complex and confirmed its capacity to be a useful speciation tool for studies of inorganic aqueous speciation of metal ions. However, we could only use this technique for the characterization of the species which were formed at low ionic strength. The stabilities of EuSO$_4^{2-}$ and Eu(SO$_4$)$_2^{-}$, were determined as functions of the ionic media by TRLIL. Our speciation model for Eu(III) was consistent with earlier investigations by classical techniques and, interestingly, with studies on Am(III) and Cm(III), suggesting a good analogy. This experimentally confirmed that spectroscopic techniques do not provide stability constants for only inner-sphere complexes, but rather global constants for inner- and outer-sphere complexes, when they exist. In equilibrium conditions in the interstitial waters of clayey materials of the Callovian formation, the ionic strength and the sulfate concentration have been estimated to be 0.1 and 0.031 M, respectively. Under these conditions, the concentration ratios of LnSO$_4^{2-}$ and Ln(SO$_4$)$_2^{-}$ over Ln$^{3+}$ were calculated to be 10.3 and 3.9, respectively, using the stability constants determined in this work for Eu(III).

Acknowledgment. This work was supported by ANDRA through a PhD grant for T.V. and by CEA DEN/DSOE (R&D).

Appendix

The reaction of a ligand L^{y-} with an aquatic metal ion M^{z+} is generally described by the Eigen–Tamm mechanism,57 whereby the ultimate step is an equilibrium between inner-sphere ($ML_j^{(z-y)(in)}$) and outer-sphere ($ML_j^{(z-y)(out)}$) complexes as illustrated by eq A1 where δn denotes the hydration number variation.

$$ML_j^{(z-y)(in)} \rightleftharpoons ML_j^{(z-y)(out)} + \delta nH_2O \quad (A1)$$

The thermodynamic constant that characterizes this equilibrium is

$$k_{ij} = \frac{\beta_{ij}^{(out)}}{\beta_{ij}^{(in)}} \quad (A2)$$

where $\beta_{ij}^{(in)}$ and $\beta_{ij}^{(out)}$ are the formation constants of the inner- and outer-sphere complexes, respectively. Thus, the measured intensity, I_{mes} (light absorption or emission), is

$$I_{mes} = \sum_i \beta_{ij}^{(tot)} P_{ij}^{(tot)} [M^{z+}][L^{y-}] \quad (A3)$$

where we have noted

$$\beta_{ij}^{(tot)} = \frac{[ML_j^{(z-y)(in)}] + [ML_j^{(z-y)(out)}]}{[M^{z+}][L^{y-}]} = \beta_{ij}^{(in)} + \beta_{ij}^{(out)} \quad (A5)$$

$$P_{ij}^{(tot)} = \frac{\beta_{ij}^{(in)} P_{ij}^{(in)}}{\beta_{ij}^{(tot)}} + \frac{\beta_{ij}^{(out)} P_{ij}^{(out)}}{\beta_{ij}^{(tot)}} = \frac{P_{ij}^{(in)}}{1 + k_{ij}^{(in)}} + \frac{P_{ij}^{(out)}}{1 + k_{ij}^{(out)}} \quad (A6)$$

which demonstrate that the formation constant measured for a species $ML_j^{(z-y)}$ is actually the sum of the formation constants for the inner- and outer-sphere species. The $ML_j^{(z-y)}$ species is thus characterized by $P_{ij}^{(tot)}$ and $\beta_{ij}^{(tot)}$, not by $P_{ij}^{(in)}$ and $\beta_{ij}^{(in)}$. In this work, mononuclear species of M^{3+} are involved ($i = 1$ and is omitted), and eq A4 results in an equation similar to that used for the TRLIL data analysis (eq 12)

$$\frac{I_{mes}}{[M]_T} = \frac{\sum_{0<j<2} \beta_{ij}^{(tot)} P_{ij}^{(tot)} [L^{y-}]}{\sum_{0<j<2} \beta_{ij}^{(tot)} [L^{y-}]} \quad (A7)$$

Even if spectral changes usually originate from the formation of inner-sphere complexes, the measured intensity probes the formation of both inner- and outer-sphere complexes, whose ratio is actually constant, and equal to k_{ij} (eq A2). For instance, when only one $ML_j^{(y)(out)}$ complex is formed, $P_{ij}^{(out)} \approx P_{ij}^{(in)}$, the specific intensity for the free M^{3+}, then $I_{mes} \approx P_{ij}^{(in)} [M]_T$, so that spectrophotometry is not sensitive to complexation at all. However, when $ML_j^{(y)(in)}$ is formed exclusively or in addition to $ML_j^{(y)(out)}$, spectrophotometry is relevant for measuring either $\beta_{ij}^{(tot)} = \beta_{ij}^{(in)}$ or $\beta_{ij}^{(tot)} = \beta_{ij}^{(in)} + \beta_{ij}^{(out)}$, respectively.

Supporting Information Available: MS/MS data and assignments, MS data and assignments in the negative-ion mode. This material is available free of charge via the Internet at http://pubs.acs.org.

ICO48503J