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Ce rapport contient essentiellement une démonstration de la loi d'action de masse 
pour les solutions solides. Naturellement, nous obtenons des formules connues. 
Ainsi,  pour  la  solution  solide  (idéale)  ABb(1-x)Ccx nous  retrouvons  le  pseudo  produit  de 
solubilité variable

Ks,B
1-x Ks,C

x = [AzA ] [BzB ]b(1-x) [CzC]cx

1-x b(1-x) xcx

où Ks,B et Ks,C sont les produits de solubilité (eux constants et classiques) des pôles purs, 
ABb et ACc respectivement, les valeurs de b et c étant imposées par les charges (zi) des 
ions,  pour  assurer  l'électro-neutralité.  Toutefois,  le  fait  d'avoir  rendu  une  composition 
variable (x) dans le solide initialement pur (un des pôles purs), rajoute un degré de liberté 
au système d'une part, et d'autre part, la loi du produit de solubilité (pour le pôle pur initial) 
n'est plus valable. Ainsi, là où on avait une équation, celle du produit de solubilité, il en 
faut maintenant deux. Celle ci-dessus (du pseudo produit  de solubilité variable) en est 
une ; nous démontrons que l'autre est, par exemple

Ks,C

Ks,B
=

1−xb [CzC ]c

[BzB ]bxc

le classique coefficient de partage qui, en fait, est la loi d'action de masse appliquée à 
l'équilibre d'échange des ions qui sont en proportions variables dans ABb(1-x)Ccx ( [BzB ] et
[CzC]).

Même  si  les  deux  équations  sont  publiées,  il  n'est  pas  vraiment  clair  dans  la 
littérature ou les manuels de cours, qu'il faille deux équations et non une seule, ou 
du moins que ces deux équations sont simultanément vérifiées. Naturellement, il y a 
plusieurs  variantes  dans  la  littérature,  puisque  la  combinaison  d'un  système  de  deux 
équations peut donner des systèmes de deux équations équivalents. L'un des plus connus 
est le système

[AzA ] [BzB ]b

1−x b
= Ks,B

[AzA ][CzC ]c

xc = Ks,C 

On trouve aussi des écritures équivalentes où 1-x et x sont remplacés par les fractions 
molaires de ABb et ACc dans le mélange solide. Même si ceci est parfaitement justifié, le 
mélange n'est pas une mosaïque des pôles purs; mais bien une répartition au hasard de B 
et C sur les sites d'échange d'ions : on ne retrouve pas les pôles purs dans la solution 
solide, cette écriture ne correspond pas à la géométrie,  elle représente une moyenne. 
Quelques auteurs donnent des démonstrations exactes de certaines de ces formules, en 
s'appuyant  sur  une  interprétation  correcte  de  la  loi  d'action  de  masse  classique  telle 



qu'elle doit être appliquée à une solution solide ; mais les conditions d'application de la loi 
d'action de masse, sont assez subtiles dans ce cas là (voir par exemple la discussion de 
Lippmann, dans le texte en anglais)  et  la plupart  des justifications publiées,  sans être 
nécessairement fausses, restent floues, intuitives et peu convaincantes. 

Ceci a d'importantes  implications pratiques. La co-précipitation peut, en effet, être un 
moyen de  piégeage de radio-nucléides  par  des  minéraux  naturels,  encore  faut-il  faire 
admettre que les équations pour prévoir cette rétention, sont bien établies et non, plus ou 
moins empiriques. Les agences chargées de la gestion des déchets radioactifs ont ainsi 
récemment soutenu un travail de compilation des modélisations géochimiques existantes 
dans ce domaine (évoqué dans le texte en anglais).

Comme elle devait faire le point de ce qui est publié sur cette question pour des minéraux 
relativement simples (rapport non publique), j'ai proposé à Marie-Hélène Fauré de ne pas 
se contenter de trier des formules utilisée par les géochimistes ; mais d'en chercher aussi 
les justifications théoriques ou expérimentales. Elle en a ainsi testé un bon nombre sur 
des systèmes simples, ce qui a permis de se rendre compte que souvent une seule des 
équations ci-dessus est utilisée, puis une autre plus ou moins empirique, de forme variée 
suivant  les  auteurs,  est  éventuellement  rajoutée  pour  interpréter  des  résultats 
expérimentaux.  Ces  derniers  sont  malheureusement souvent  trop  imprécis  sur  la 
composition  de  la  solution  aqueuse  pour  pouvoir  calculer  l'influence  des  réactions  en 
solution aqueuse, concurrentes à la co-précipitation : les vérifications expérimentales sont 
alors peu convaincantes quand elles nécessitent l'ajustement de paramètres ad hoc. Le 
pseudo produit de solubilité variable est, en particulier, souvent un point de départ, puis 
sont parfois rajoutés des raisonnements (explicitement ou non) approximatifs pour trouver 
l'équation manquante qui donnera, par exemple, la stoechiométrie dans le solide (la valeur 
de  x).  Une  approximation  mathématiquement  simple  est  de  supposer  la  dissolution 
stoechiométrique  (c'est-à-dire  à  x  constant) ;  mais  il  ne  semble  pas  qu'il  existe  de 
justification convaincante de cette hypothèse ou d'autres dans le même esprit. Examinant, 
en effet, ce type de démarche j'ai proposé que la valeur de x devrait correspondre à un 
minimum partiel  de solubilité ;  comme il  y  a  plusieurs  espèces chimiques (A,  B et  C) 
minimiser la solubilité (en fonction de x uniquement) signifie en fait trouver l'énergie libre 
de formation de la solution solide, la plus faible ; on se rend alors aisément compte que 
cela revient à minimiser son pseudo produit de solubilité variable. Effectivement, dérivant 
(par rapport à x uniquement) le log de son expression, on trouve exactement le log de la 
loi d'action de masse de  l'équilibre d'échange d'ions. C'est l'équation manquante. Cette 
approche a ensuite été appliquée au système NpO2

+ / Na+ / CO3
2- pour lequel il avait été 

(intuitivement)  proposé,  sur  la  base  de  résultats  expérimentaux  de  solubilité,  que  la 
stoichiométrie  pourrait  varier  dans le  solide or  l'allure  des résultats  expérimentaux est 
finalement nettement différente de celle des courbes de solubilité théorique de solutions 
solides dans le domaine où des traces d'un des cations serait incorporé dans la phase 
pure de l'autre. Inversement, si les proportions des deux cations sont du même ordre dans 
le solide, la différence des solubilités aqueuse contrôlée soit par la solution solide soit par 
une phase pure, est de l'ordre de grandeur de la précision expérimentale [99VIT/BEA, 
03VIT/CAP].

Serge Maillard est à l'origine de la généralisation de la démonstration de la loi d'action de 
masse que nous donnons (pour un équilibre à double degré d'avancement). Il a, en effet, 
trouvé que la réaction de dissolution de la solution solide ne correspond pas à un équilibre 
satisfaisant aux conditions d'application de la loi d'action de masse tel qu'on la démontre 
classiquement dans les manuels de cours (c'est évident puisque la réaction en question 
n'est  pas  caractérisée  par  une  constante  d'équilibre,  mais  par  un  pseudo  produit  de 



solubilité variable, encore fallait-il y penser). La démonstration passe, en effet, par une 
minimisation de de l'enthalpie libre du système, ainsi on annule 

dG = ∑
i
i dni

avec dni = i d

où ξ est le degré d'avancement et i un coefficient stoechiométrique : quand ce dernier 
varie,  la  formule  dni = i d n'est  évidemment  plus  valable.  Une  fois  rendus  à  cette 
évidence, il  suffit  alors de généraliser la démonstration de la loi  d'action de masse en 
utilisant

dni = ∂ni

∂ x
d∂ni

∂ x dx

On retrouve et démontre ainsi toutes les formules correctes publiées sur le sujet. Cette 
démonstration est bien plus compliquée que celle de Lippmann , qui est vraiment plus 
élégante, surtout si on, y rajoute la façon qu'a Michard de généraliser cette approche à 
des ions de charge différentes. Inversement, comme nous re-démontrons directement la 
loi  d'action de masse dans le cas particulier  qui  nous intéresse,  la  justification en est 
explicite et immédiate.

Les équations trouvées peuvent être combinées de différentes manières pour en mettre 
en évidence le sens physique ou chimique. Comme il s'agit d'équations équivalentes à 
celles  de Lippmann et  Michard,  au moins  dans l'esprit,  nous avons,  dans le  texte en 
anglais,  présenté ces commentaires comme discussion des équations de Lippmann et 
Michard. Ceci a l'avantage de ne pas faire porter le débat sur la validité des équations 
(puisqu'elles viennent d'auteurs reconnus) ;  mais uniquement leur signification. Dans le 
même esprit il n'y a pas, à cet endroit, de souci de démonstration mathématique. Celle-ci 
vient  à  la  fin,  ce  qui  permet  de ne  pratiquement  pas y  mêler  de  commentaire  sur  la 
signification physique ou chimique des équations.

Gil Michard m'a fait d'utiles remarques. Je me souviens de celle sur le fait qu'on utilise les 
produits  de  solubilité  des  pôles  purs  dans  les  calculs  sur  leur  solution  solide  (pour 
rattacher  cette  dernière  à  l'état  standard) ;  mais  que  les  pôles  purs  ne  peuvent,  en 
général, pas être thermodynamiquement stables si la solution solide l'est.

J'ai souvent sollicité Patrick Lovera pour qu'il vérifie certains des calculs (présentés ici et 
bien  d'autres).  Il  m'a,  en  particulier,  fait  remarquer  que  je  n'utilise  pas  (ou  plus)  les 
fractions molaires. J'ai d'abord considéré que c'était pour simplifier les calculs et que mes 
unités de concentration (dans le solide) devaient être équivalentes aux fractions molaires ; 
en voulant vérifier j'ai finalement vu qu'il n'en est rien et ce m'a aussi permis de me rendre 
compte que les fractions molaires ne sont pas des variables intensives et donc pas des 
unités  de  concentration  dans  le  cas  où  les  ions  échangés ( [BzB ] et [CzC]) sont  de 
charges différentes. Les unités de concentration que j'utilise sont, en effet, ramenées à la 
quantité de matrice (représentée par le nombre de moles de A dans ABb(1-x)Ccx) et non au 
nombre total de moles qui change au cours de l'échange de B et C, sauf quand ils sont de 
même  charge  (alors  b = c).  Les  unités  de  concentration  que  j'utilise,  préservent  une 
certaine symétrie entre les rôles de B et C ; c'est vraisemblablement ce qui permet de 
résoudre  ce  paradoxe  (relevé  par  Michard  dans  l'édition  de  1989 de son  livre)  qu'en 
utilisant les fractions molaires, on peut trouver des équations non équivalentes suivant la 



façon de faire les calculs. Cela rejoint aussi une remarque de Dominique You, sur le fait 
que les concentrations doivent  être des variables  intensives,  ce qui  est  assez évident 
(mais ça ne dispense pas d'y faire attention), en fait nécessaire pour démontrer G = n μ. 
Pour  cette  raison il  y  a  problème a utiliser  des concentrations de surface,  ce qui  est 
également  évident  puisqu'il  faut  effectivement  connaître  le  lien  entre  variation  de  la 
surface et taille du système ; or ce lien peut prendre des formes très variées.

Dominique You, m'a également donné un éclairage complémentaire des solutions solides, 
en  utilisant  l'approche  mélange  de  solides  purs,  plutôt  que  solution  solide.  Les  deux 
approches sont équivalentes. Chacun avec ses avantages et inconvénients. Les solutions 
solides présentent la difficulté d'isoler un des constituants pour en faire le solvant (ou la 
matrice) qui représente la taille du système, les solutés n'interviennent pas dans la taille 
du  système.  Ca  peut  être  pris  en  compte  comme  écart  à  l'idéalité.  L'avantage  des 
solutions solides est qu'on peut plus facilement faire intervenir les ions réellement mis en 
jeux (ce qui peut être indispensable pour traiter l'écart à l'idéalité), alors que les mélanges 
ne connaissent que les pôles purs comme espèces chimiques. Je n'ai pas spécialement 
développé ce genre de discussion.

Comme Michard a montré que les calculs ne sont pas beaucoup plus compliqué quand les 
ions échangés sont de charges différentes, j'ai surtout traité ce cas. On peut toutefois se 
demander comment les changements de coordination et stoechiométrie accompagnant 
alors forcément l'échange d'ions, peuvent être compatibles avec la rigidité de la matrice. 
La réponse est dans la nature. Les métallurgistes connaissant bien, aussi, ce genre de 
problème. Dominique You m'en a expliqué un exemple... mais je n'ai pas inclus d'exemple 
dans ce texte, je m'en suis toutefois inspiré pour traiter les lacunes. En fait, ce n'est pas si 
simple, car il  faut faire intervenir des lacunes, plus précisément une maille élémentaire 
généralement  plus  grande  que  celle  de  constituants  pures  et  souvent  vue  de  façon 
différente. On s'efforce alors d'avoir le même réseau pour les deux pôles purs en laissant 
éventuellement des sites vacants. Cela suppose donc de bien examiner les structures. Il 
peut y avoir plusieurs descriptions géométriques possibles, particulièrement si on accepte 
de petites distorsions de structures parfaites. Ces petites  distorsion sont physiquement 
réalistes en raison des lacunes et surtout de l'échange d'ions de types différents. Ceci met 
en évidence que trouver la (ou les) façon(s) pertinente(s) d'écrire la stoechiométrie de la 
solution, peut-être délicat. Déjà le choix de l'écriture ABb(1-x)Ccx n'est immédiat.

Les  équations  permettant  de  traiter  les  solutions  solides  AnO2+x [02VIT/CAP]  ont  été 
corrigées par Thomas Vercouter ; mais je n'ai pas considéré de lacune dans ces solides. 
Cette  description  permet  toutefois  se  faire  une  idée  qualitative  de  l'influence  de  la 
formation  de  solutions  solides  ou  de  composés  stoechiométriques  intermédiaires,  de 
montrer comment calculer le potentiel d'oxydo-réduction contrôlé par la solution solide et 
donc de modéliser des résultats électrochimiques.

Philippe Jean-Baptiste m'a signalé la publication de Sillén dont j'utilise la méthode pour 
montrer qu'on rajoute un degré de liberté du système.

Pascal Reiler m'a forcé à terminer ce texte.

[99VIT/BEA] P.Vitorge, C.Beaucaire, M.-H. Fauré, S.Maillard, H.Capdevila.  Solubilities of 
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media? Workshop on Solubility of actinides in relation with nuclear waste matrices. Mol 
(Belgium) 19-20/05/1999

02VIT/CAP] P.Vitorge, H.Capdevila, S.Maillard, M.-H. Fauré, T.Vercouter Thermodynamic 



Stabilities  of  MO2+x(s)  (M =  U,  Np,  Pu  and  Am),  Pourbaix  diagrams. J.  Nuclear  Sc. 
Techno., Supplement 3, p713-716(2002).

[03VIT/CAP]  P.Vitorge,  H.Capdevila,  Thermodynamic  data  for  modelling  Actinide 
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 1 Introduction.

Coprecipitation  is  often  understood  as  the  incorporation  of  elements  at  trace 
concentrations into  -initially pure- solid compounds. It is rather believed to be observed, 
when the trace element is a chemical analogue of an element at macro-concentration of 
the  -initially  pure- solid  compound.  It  has  typically  been  used  to  identify  radioactive 
isotopes [1898CUR/CUR]. Co-precipitation can result in lowering solubility as compared to 
the solubility, when controlled by pure compounds. For this reason it is also important for 
Geochemistry, waste management and (de)pollution studies. 

The solid resulting from co-precipitation is a new homogeneous solid phase called Solid 
Solution  or  Mixture,  where  the  original  pure  compound  now  contains  variable 
concentrations of the co-precipitated impurity. These two terms (Solid Solution or Mixture) 
reflect  two  different  approaches  for  the  thermodynamics  descriptions:  these  two 
approaches use slightly different ways for describing the same system. Mixtures are built 
from pure solid compounds (namely end-members or equivalently pure components) in 
various proportions -none of them specially at trace concentration-, while for solid solutions 
one of  the pure compounds is  identified as the matrix,  in  which various elements are 
soluble.  The  later  description  is  actually  also  used  for  aqueous  solutions,  it  is  more 
convenient  for  handling  chemical  equilibria  written  with  the  actual  chemical  species 
-including ions- and this is needed to identify ideal systems. 

Aqueous solubilities can be calculated by using classical chemical thermodynamics for the 
solid  and  ideal  aqueous  phases.  These  equations  are  also  well  known,  and  typically 
implemented in geochemical  computer  codes for  the case of  ideal  solid solutions (see 
typically  Ref.[PHREEQC]).  Extension  to  diluted  (ionic  strength  less  than  typically 
0.1 mol.L-1)  real  aqueous  solutions  can  be  performed  by  using  activity  coefficients  as 
calculated  with  the  Davies'  equation,  or  other  empirical  formula.  For  this,  the 
stoichiometries and thermodynamic stabilities -i.e. ·ΔrG values or equivalently equilibrium 
constants- are needed for all  the chemical  species at  each temperature and pressure. 
Mass  balance  equations  are  also  needed.  They  are  written  for  concentrations,  while 
equilibrium constants are for activities. The later are equivalent to concentrations for ideal 
systems,  which is  the case for  chemical  species diluted at  very low concentrations in 
solutions or solid matrix. This is relevant for coprecipitation of trace elements. However, 
such theoretical  description  is  still  valid  for  any concentration,  providing the system is 
ideal, unless further approximations are introduced for neglecting trace concentrations in 
typically  mass  balance  equations.  For  this  reason  we  will  essentially  describe  ideal 
systems, giving only a few indications on the way to use it as the starting point for real 
(non-ideal) systems. On the other hand, it is interesting to start with trace concentrations 
for understanding how solid solutions can be formed, and to get qualitative pictures of it. 
We  will  start  with  such  simple  cases  for  pointing  out  more  general  features. 
Thermochemical equations are widely used for calculating aqueous speciation, including 
aqueous solubilities as controlled by pure compounds, while it is often a bit confusing for 
aqueous  solubilities  controlled  by  solid  solutions,  despite  the  basic  thermodynamics 
equations  for  solid  mixtures  are  well  known  for  a  long  time  (see  typically  Textbook 
[52GUG]). As an example of this complexity for modelling coprecipitation, one can cite a 
recent  compilation  published  by  the  AEN-TDB,  where  many  equations  used  by  geo-
chemists are reviewed.

The simplest solid solutions are certainly pure compounds with several isotopes: there is 
no  problem  to  qualitatively  imagine  (isotopic)  equilibrium  for  such  compounds,  when 
equilibrated with aqueous solutions. One of the isotopes can further be replaced with a 



chemical analogue. We first examine isotopic exchange equilibria in an aim to point out 
qualitative features, when using the law of mass action for solubility equilibria -namely the 
solubility product equation-. This is supported by a few equations given without rigorous 
demonstration. Finally demonstrations are given for general cases, including exchanges of 
ions  with  different  charges  inside  the  solid  phase.  Before  these  mathematical 
demonstrations we point  out that vacancies can allow exchanges of ions with different 
charges still accommodating electro-neutrality.

We take the example of the simple ABb(s) solid made with Ions Az A and BzB of charges 
zA and zB. For electro-neutrality zA and zB are of opposite signs, and

b=−
zA

zB
.  (1)

Ks,B=[AzA ] [BzB ]b  (2)

is the solubility product of ABb(s), where [i] is the concentration of Species i. [i] is the usual 
notation for molar concentrations (mole per litre of solution), while molal concentrations 
(mole  per  kg  of  water  -water,  not  solution-)  should  be  used  as  thermodynamics  unit; 
furthermore, activity should be used instead of concentrations. This will be done only when 
demonstrations will be given (Section 4.). Going from activities to molalities and then to 
molarities is classically done by introducing molar activity coefficients ,  then molar to 
molal  correction  factors ϱ. These  corrections  are  included  in  equilibrium  constants 
(here Ks,B) -they must be small corrections (less than an order of magnitude)- which finally 
does not  change the formula (here Eq.2):  the equilibrium "constant"  (here Ks,B)  -which 
actually is not a constant:  it  is a function of the pressure (P) and the temperature (T)- 
slightly depends on the medium, essentially ionic strength (for  ) and density (for ϱ).
Ks,B, the solubility product is the constant of Equilibrium

ABb(s)  Az A + b BzB  (3)

Since Az A can form a solid  compound with BzB , it  might  very well  also  form soluble 
complexes with BzB  : [AzA ] is not necessarily the total aqueous concentration of A zA .
For this reason, we focus only on the law of mass action (for the solid): not on the mass 
balance equations in the aqueous solution. Calculating the exact aqueous speciation is 
now easily done with popular computer codes, it is usually well done in the literature, and 
well understood. Classical approximations can also be useful. Typically, when an excess 
of BzB is  used, ABn

z A−n zB is  the  major  chemical  species  of  A,  and [ABn
z A−n zB ] is 

approximately its total concentration. In that case the relevant equilibrium and equation are

ABb(s)  ABn
z A−n zB +(b-n) BzB  (4)

Ksn,B = [A zA ][ABn
zA−n zB]b-n

 (5)

This points out that we have written actual aqueous species by using the corresponding 
stoichiometric  coefficients  (as  typically  n  in ABn

z A−n zB), while  in  the  solid  phase  the 
stoichiometric coefficient (here b for ABb(s)) is only for electro-neutrality: b does not give 



any (direct) indication on coordination chemistry. This illustrates that both phases are not 
treated in the same way; while we will see that the solid solution approach attempt to treat 
the solid phase as any solution. 

 2 The law of mass action for an isotopic equilibrium.

We first examine a simple example: #B, a radioactive isotope, is added to the above ABb(s) 
/ Az A / BzB system, where B is also one isotope. In equilibrium conditions the isotopic 
ratio of  #B to B is identical for any of their chemical species.  #B is here considered as a 
new chemical species with virtually the same properties as B: the equilibrium constants 
with  #B are virtually the same as those with B. Namely, the solid  is  now A(B1-x

#Bx)b or 
equivalently ABb(1-x)

#Bbx, where

r =
[ BzB# ]
[BzB ]

=
x

1−x  (6)

is the isotopic ratio in the solid. The species in the solid are over-lined. The isotopic ratio is 
the same in the aqueous solution:

[ BzB# ]
[BzB ] =

[ BzB# ]
[BzB ]

= r. (7)

From Equation 7

[BzB ] [ BzB# ]
[BzB ] [ BzB# ] = 1 (8)

which can be interpreted as the constant of the

BzB + BzB#  BzB + BzB#  (9)

exchange equilibrium, where we are using [Bz B] and [ BzB# ] , the concentrations (of BzB

and BzB# ) inside the (ABb(1-x)
#Bbx) solid. For this reason, it is more convenient to write:

ABb(1-x)
#Bbx = Az A + b(1-x) BzB + b x BzB# .  (10)

The

A =
1

1b , B = b 1−x
1b and  B# =

b x
1b  (11)

mole fractions are usual concentrations, but we will use the concentrations obtained by 
multiplying the mole fractions by the (1+b) constant term:



[AzA ] = 1, [Bz B] =
B

A
= b(1-x) and [ BzB# ] =

 B#

A
= b x (12#B)

These  definitions  of  the  concentrations  are  relative  to Az A, which  concentration  is 
constant, consistently with the ABb(1-x)

#Bbx notation: Az A is considered as the amount of 
solid  matrix,  namely  the  solvent,  in  which BzB and BzB# are  dissolved  and  can  be 
exchanged. Definition of concentrations are part of the definition of the reference state 
[91STO]:  the  standard  state  is  the  matrix,  here  represented  by Az A at  constant 
concentration, in the same way as the standard state for aqueous solutions is pure liquid 
water,  where  molal  concentrations,  the  concentrations  used  for  thermo-chemistry  are 
relative to water  -not solution contrary to molal concentrations-. For this reason, we will 
see later that these definitions of the concentrations in the solid allow generalisations.

When BzB# is at trace concentration the system is still quite simple: the concentration of
BzB# is  lower  than the solubility  limit  of  the A Bb

# s pure compound. [ BzB# ] can be 
neglected as compared to [Bz B] : x << (1-x) or equivalently r << 1, and the solid phase 
now  contains  a  few  traces  of BzB# , nevertheless  the  solubility  product  law  is 
approximately valid:

Ks,B ≈ [AzA ] [BzB ]b  2

from which the concentration of BzB# can be estimated from Eq.2 and 7 using the above 
x << 1 approximation:

[AzA ] [BzB ]b ≈ Ks,B rb = Ks,B
xb

1−x b
≈ Ks,B xb  (13)

Note that since r << 1, [A zA ] [ BzB# ]b << Ks,B = Ks , B# , which consistently means that we are 

well  below the solubility  of A Bb
# s . Eq.13 can be rearranged as Ks,B ≈

[AzA ] [ BzB# ]b

[ BzB# ]b

which can be divided by [A z A ] ≈ 1 to interpret 

Ks , B# ≈ Ks,B ≈
[AzA ] [ BzB# ]b

[AzA ] [ BzB# ]b
= [AzA ][ BzB# ]b

xb = KA- B#  (14)

as KA- B# , the constant of Equilibrium

Az A + b BzB#  Az A + b BzB# .  (15)

Ks,B,  the solubility  product  of  the pure ABb(s)  compound appears to  be an estimate of
KA- B# , the  partition  equilibrium  constant  of A Bb

# between  the  solid  and  aqueous 
phases.  However,  it  was  obtained  only  for  trace  concentrations  (x ≈ 0).  It  is  not  a 
demonstration, it only points out that the isotopic partition equilibrium of BzB# also gives 



the above partition equilibrium, and the corresponding law of mass action, when using the 
concentrations inside the solid phase. 

Lippmann demonstrated equations similar to Eq.14. For this, he correctly deduced Eq.14 
as the law of mass action for Equilibrium 15 assuming that the solid phase is an ideal solid 
solution. This is always the case for isotopic exchanges: the standard chemical potentials 
are independent of the isotopic ratio. Similarly the law of mass action is readily obtained 
for the following equilibrium

Az A + b BzB  Az A + b BzB  (16)

namely

KA-B =
[AzA ] [BzB ]b

[AzA ] [BzB ]b
≈

K s,b

[AzA ]x=0 [BzB ]x=0

b ≈
K s,b

1×1b = Ks,b (17)

where now only macro-concentrations are used, however this is again valid only for BzB#

at trace concentrations. Again Ks,B is also an estimate of KA-B, the constant of a partition 
equilibrium.

 3 Using the law of mass action for co-precipitation.
 3.1 Introduction.

For  the  above  (Eq.9)  isotopic  exchange  (Section  2)  we  have  used  the  following 
descriptions that will be generalized to other ionic exchange reactions:

● We  have  written  -and  used- [Bz B] and [ BzB# ] , the  concentrations  (of BzB and
BzB# ) inside the (ABb(1-x)

#Bbx) solid. 
● Consistently, we have written ABb(1-x)

#Bbx = Az A + b(1-x) BzB + b x BzB# (Eq.10).
● b, the stoichiometric coefficient (inside ABb(s)) is determined by electro-neutrality 

(Eq.1),
● while  we  have  written  actual  aqueous  species  by  using  the  corresponding 

stoichiometric coefficients (as typically n in ABn
z A−n zB),

● we  have  written  the  law  of  mass  action  (Eq.14 and  17) for  partition  equilibria 
between the solid and aqueous phases (Equilibria 15 and 16).

Such approach can be generalized now considering CzB instead of BzB# , where C is a 
chemical  analogue of  B; for  this reason they have the same charge (zB).  Namely,  the 
example of BzB# / BzB isotopic  exchange can be generalized  to CzB / BzB. This  has 
typically  been  done  by  Lippmann  [77LIP].  Furthermore,  the  equations  are  not  much 
complicated when B and C have different charges, as typically shown by Michard [02MIC]. 
In this part we recall  these equations using our own notations and concentration units, 
because usual mole fractions are not clearly intensive variables (see below Eq.22). We do 
not attempt to give demonstrations, we rather focus on classical published equations and 
their meaning as already outlined by Lippmann for many of them. Demonstrations will be 
given later (Section 4.). We are still  using aqueous molar concentration units, including 
medium effects in the equilibrium constants for the same reasons as already explained 
above (Section 1.).

 3.2 Lippmann's remarks.

After a brief history of solubility products, Lippmann indicated that they very well account 



for solubilities of pure compounds providing a few complications are taken into account: 
"electrolytic  dissociation,  notably  in  solutions  containing  additional  dissolved  ions"  and 
"ionic activities". He then pointed out a few general features of solid solutions interesting 
for their thermodynamics description, even though he finally treated only simple specific 
cases:

● "the [solubility] product is constant under certain conditions. The most important of  
these are [...] "chemical purity" of the solid phase. [...] binary compounds are indeed  
chemically pure, because [...] their stoichiometry is determined by electroneutrality." 
This to insist that solubility products are only valid for constant compositions of the 
solid  phases,  because  to  derive  it  "from  the  principle  of  thermodynamics  [...]  
chemical purity [...] postulate is indispensable in formulating the law of mass action". 
Indeed, the law of mass action is demonstrated by minimising Gibbs energy, hence 
by  differentiating  it  assuming  constant  stoichiometric  coefficients.  This  will  be 
explained below (Section 4.3.): the derivative of variable stoichiometric coefficients 
-as typically b(1-x) and bx in ABb(1-x)

#Bbx- introduces new terms. Furthermore, the 
activity of the (pure) solid phase is constant: "In the derivation of the constancy of  
the solubility product starting from the law of mass action, a fixed composition of the  
solid is required [...] In the same way, the procedure followed in derivations based 
on  thermochemical  potentials  [...]  is  realistic  only  if  the  solid  composition  is  
invariant."

● The previous remarks and other ones point out that the solubility product has no 
reason to be valid for "minerals [...] in which [...ions] may replace each others in  
varying  degrees."  or  any  "mixed  crystals  (or  solid  solutions)  [...]  described  by 
continuously  variable  stoichiometric  coefficients.  [...]  The pertinent  equilibria  are  
appropriately described in terms of Nernst's distribution (or partition) coefficients". 
Indeed,  we  wrote  partition  equilibria  (Eq.9,  15 and  16)  and  their  equilibrium 
constants (Eq.8, 14 and 17 respectively).

● There are "additional degrees of freedom resulting from variable composition of the  
solid".  One  new  variable  is  introduced  in  a  two  component  solid  solution  -the 
continuously  variable  ratio  of  the  two  components  in  the  solid,  typically  x  in 
ABb(1-x)

#Bbx- and  this  will  need  an  additional  equation:  namely  instead  of  one 
solubility  product  for  a  pure  compound,  two  equations  are  now  needed.  Since 
equivalent sets of equations can be derived by combining a set of two equations, 
there are different equivalent ways to present the results.

● "crystalline minerals contain non fractional multiples of their chemical formulae in  
the unit cell [...] because a set of atomic sites [(equipoints)...] is either completely  
filled or completely  vacant [...]  Fractional occupation [...is]  equivalent  to variable  
composition". Actually, vacancies can explain how ions with different charges can 
be  exchanges  in  solid  solutions  without  important  structural  changes  and  still 
keeping electro-neutrality:  a  (big  enough)  pertinent  elementary cell  needs to  be 
identified.

● "Each chemical species is bonded by the crystal in its own characteristic manner  
distinguished by [...] a preferred coordination number." As pointed out above, the 
stoichiometry in the solid is given by the electro-neutrality, while from a chemical 
point  of  view,  it  is  well  known  that  characteristic  coordination  geometries  are 
expected  for  each  type  of  ion.  For  example  a  cation  is  surrounded by  several 
anionic  ligands,  which can be shared by two cations:  this explains how electro-
neutrality stoichiometry can accommodate usual coordination numbers. This again 
can be possible  (without much structural  changes)  for  big elementary  cells  with 
vacancies.

● Solid solutions are supposed to be build from "End-members". This often results in 
using mole fractions of the end-members as concentration unit, typically CaCO3

in 



a mixture  with CO3
2- as common anion,  and  where  Ca2+ can  (continuously)  be 

exchanged  with  other  di-cations.  However,  in  simple  cases  it  is  also  -or  it  is 
proportional to- the concentration of the exchanged ion, in our example CaCO3

(=
Ca2+ = [Ca2+] /2 ) is rather used in the mixture approach, while [Ca2+ ] is rather 

used in the solid solution approach, where the system is described with the actual 
chemical species  -as in aqueous solutions- rather than with (neutral) compounds. 
Note  that  solution  chemists  do  not  use  end-members  to  describe  aqueous 
solutions.

● "mixed crystals" of the CaCO3 and MnCO3 "end member[s]" are "represented by a 
series  of  solid  solutions  [...]  characterised  by  their  common  anion  [...]  Any  
composition may be characterised either by the mole fraction CaCO3

of the calcite  
end  member  or  by  [...] MnCO3

"=  1- CaCO3
. "Under  equilibrium  conditions  ... 

[Ca2+ ] [CO3
2- ] ... must be smaller than the solubility product Kcalcite [...] The activity  

of  CaCO3 in  the  solid  solution  may  now  be  defined  in  such  a  way  that  [...] 
[Ca2+ ] [CO3

2- ] = Kcalcite CaCO3
CaCO3

". This writes

[Ca2+ ] [CO3
2- ] = Ks,calcite [Ca2+] [CO3

2-] = Ks,calcite (1-x) (18)

with our concentrations units, where constant concentration factors are included in 
the  equilibrium  constant,  as  well  as  activity  coefficients  as  usual  in  solution 
chemistry. "Similarly [Mn2+ ] [CO3

2- ] = Krhodochrosite MnCO3
MnCO3

" and

[Mn2+ ] [CO3
2- ] = Ks,rhodochrosite [Mn2+] [CO3

2- ] = Ks,rhodochrosite x. (19)

Eq.18 and 19 are Eq.14 and 17 respectively.

Lippmann gave (correct) indications and remarks to write the law of mass action for any 
solid solution, but he actually gave examples essentially for mixtures made from two end-
members  with  similar  structures,  where  zC =  zB.  However,  the  formula  are  not  much 
complicated, when zC ≠ zB, a case we start to examine in the next section.

 3.3 Published equations.

In his text book, Michard gave equations for the

(1-x)ABb + x ACc = ABb(1-x)Ccx = Az A + b(1-x) BzB + c x CzC  (20)

solid [02MIC], where now the BzB and CzC exchanged cations are of different charges. 
This can be considered as a generalization of Lippmann's approach -to the cases where zC 

is not necessarily equal to zB-. Instead of Isotope BzB# we are now generalizing Eq.10 
with the CzB analogue ion or any CzC .  Similarly to Eq.1

c=−
zA

zC
.  (21)



Michard used mole fractions for concentration units:

A=
1

1+b+(c-b)x
, B=

b 1−x 
1+b+(c-b)x

and C=
c x

1+b+(c-b)x
(22)

In  our  opinion,  it  is  not  clear  whether  they  can  be  considered  as  actual  -intensive- 
concentration units, since the total amount of solid depends on the advancement of the ion 
exchange reaction, when b ≠ c, or equivalently zB ≠ zC (Eq.1 and 21, note that zB and zC 

are of  same sign for  electro-neutrality):  the total  amount  of  solid  is  not  constant,  it  is 
proportional to (1+b+(c-b)x) as reflected in the value of the mole fractions (Eq.22). This 
actually points out it is not straightforward to decide which stoichiometry should best be 
used to describe solid solutions. Such problem is well known -and correctly handled- for 
aqueous solutions: molar concentrations (mole per litre of solution) are commonly used for 
aqueous solutions, while molal concentrations (mole per litre of water: water, not solution) 
are used for  thermodynamics theoretical  calculations as already noted in Section 1. In 
aqueous solution, the major component (water including liquid bulk water and all the water 
molecules hydrating the solutes) gives the size of the system, in which solutes are added. 
The corresponding "solvent" of the solid solution is not exactly the major solid component 
(= end-member): it is rather the matrix, the pure component, where all the ionic exchange 
sites are imagined vacant, or equivalently homo-ionic (depending on the reference state) 
i.e. all the sites are occupied by the same ion.

However,  we  do  not  here  consider  vacancies  (this  will  be  outlined  in  Section  3.6.), 
because the description of the stoichiometry would become quite complicated: in a first 
step, we consider exchanges of ions with different charges, which is interesting to avoid 
simplifications introduced by isotopic exchanges and exchanges of homo-ions (ions with 
the same charge).  Typically,  by considering hetero-ion exchanges Michard pointed out 
there is a problem: depending on the way he performed the calculations, he found different 
non-equivalent equations [89MIC]. The problem might have been in using mole fractions. 
For this reason we rather use our concentration units. Lippmann's approach is to write the

Az A + b BzB  Az A + b BzB  (23)

Az A + c CzC  Az A + c CzC  (24)

partition equilibria between ABb(1-x)Ccx and the aqueous phase (similar to Eq.15 and 16). As 
for Eq.14 and 17, KA-B and KA-C are the constants of their equilibrium, and the values of 
these constants are obtained in the limiting cases where x = 0 or 1 respectively,  which 
gives the solubility products of the pure (end-member) compounds:

KA-B =
[AzA ] [BzB ]b

[AzA ] [BzB ]b
= [AzA ] [BzB ]b

1−x b
= Ks,B (25)

KA-C =
[Az A ][CzC ]c

[Az A ][CzC ]c
= [AzA ][CzC ]c

xc = Ks,C (26)

where we have used Eq.12 as definitions of the concentrations inside the solid phase. 
Combining Eq.25 and 26 give other equivalent equations corresponding to other chemical 



equilibria: we give below the corresponding -actually classical- equations.

 3.4 Remarks on published approaches.
 3.4.1 Concentration units

We already pointed out that the

A=
1

1+b+(c-b)x
, B=

b 1−x 
1+b+(c-b)x

and C=
c x

1+b+(c-b)x
(22)

mole  fractions  are  not  -intensive- concentration  units,  since  the  total  amount  of  solid 
depends on the advancement of the ion exchange reaction, when b ≠ c, or equivalently zB 

≠ zC (Eq.1 and  21):  the  total  amount  of  solid  is  not  constant,  it  is  proportional  to 
(1+b+(c-b)x). We use the

[A zA ] = 1, [Bz B] =
B

A
= b(1-x) and [CzC ] =

C

A
= c x (12)

concentration units. With these definitions A zA can represent the matrix, for this reason 
its concentration is constant, here taken equal to 1, in the same way -and with the same 
chemical meaning- as the activity of water is chosen to be 1 for solution chemistry.

Other  definitions  are  possible,  and  are  typically  needed  when Az A can  also  be 
continuously  exchanged  in  the  solid  phase:  in  that  case Az A geometrical  sites  can 
typically be chosen for the matrix. Such definition can also be used when Az A vacancies 
need to be considered: in that case the matrix is indeed represented by all the sites that 
could be occupied by Az A.

 3.4.2 Number of equations needed

We wrote two law of mass action equations (Eq.25 and 26) for equilibria of the ABb(1-x)Ccx 

solid  phase  with  aqueous  solutions.  Two  -and  only  two- such  equations  are  indeed 
needed. This can be qualitatively understood using a Sillén approach [67SIL]: 

● Imagine  an  aqueous  solution  equilibrated  with  the  ABb(s)  pure  compound,  the 
solution is described with mass balance and law of mass action equations, including 
Ks,B, the solubility product of ABb(s) (Eq.2)

● Now allow the  solid  be  a  solid  solution.  This allows variations  of  the  chemical 
composition of the solid, typically x. A new variable (x) is added: an extra equation 
is now needed.

Finally, two -and only two- law of mass action equations are indeed needed to describe the 
equilibration of aqueous solutions with the ABb(1-x)Ccx solid phase, where x can continuously 
vary. This result is now familiar when using computer solubility codes, where it is needed 
to indicate the exact number of mass balance and law of mass action equations: this is 
equivalent to the above Sillén approach. This of course gives Gibbs' phase rule [1876GIB]. 
However, a direct demonstration of this result will also be given: while the dissolution of 
the  ABb(s) pure  compound  is  a  normal  reaction  with  one  advancement  variable,  the 
dissolution of ABb(1-x)Ccx appears to be a "reaction" with two advancement variables.



 3.5 A dissolution reaction with two advancement variables
 3.5.1 Advancement variables

ξ, the advancement variable of the reaction corresponding to Equilibrium

ABb(s)  Az A + b BzB  (3)

is defined such as
d[i]= i,ABb

d  (27)

where i,ABb
is the stoichiometric coefficient of Species i (in Equilibrium 3): AzA ,ABb

= 1 
and BzB,ABb

= b, namely

d [A zA ] = AzA ,ABb
dξ = dξ (28)

d [BzB ] = BzB,ABb
dξ = b dξ (29)

Now,  generalizing  Equilibrium 3,  the  equilibrium  corresponding  to  the  dissolution  of 
ABb(1-x)Ccx is often written

Az A + b(1-x) BzB + c x CzC  Az A + b(1-x) BzB + c x CzC (30)

where
ABb(1-x)Ccx = Az A + b(1-x) BzB + c x CzC ,  (20)

a notation already used for isotopic exchanges (Eq.10). Eq.28 still stands, which means 
that ξ can still be interpreted as the advancement variable for the dissolution (Eq.30) of the 
matrix  -as represented by Az A - while Eq.29 is no more valid because BzB can now be 
exchanged with CzC . The 

b BzB + c CzC  b BzB + c CzC (31)

corresponding ion exchange equilibrium -similar to isotopic exchange (Eq.9)- is obtained 
by typically varying [CzC] at constant [AzA ] -or  equivalently constant  ξ  (Eq.28)- in  the 
(Eq.30)  solubility  equilibrium.  For  this  reason  the  (Eq.31)  ion  exchange  equilibrium  is 
actually already included in the (Eq.30) solubility equilibrium, which appears to have two 
advancement variables: one (ξ) for the dissolution of the matrix (at constant x) and the 
other one for the ion exchange (at constant [AzA ]). For the (Eq.30) solubility equilibrium 
Eq.28 is still  valid: d [AzA ] = AzA ,xd = dξ (since AzA ,x = 1),  while Eq.29 is  no more 
valid, because d [BzB ] now corresponds to two independent variations:

d [BzB ] =  ∂ [BzB ]
∂ [AzA ] x d [AzA ] ∂ [Bz B]

∂ x 
[AzA ]

dx = BzB,x d
dBzB,x

dx
dx = BzB,x ddBzB,x =

BzB,x d−b dx , where i,x is  the  stoichiometric  coefficient  of  Species  i  in 

Equilibrium 30, and where we used BzB,x = b(1-x) and
dBzB,x

dx
=  -b. Similarly the other 



d[i]  terms  can  be  calculated  for  i = AzA ,x (= 1)  and C zC,x (= c x).  Furthermore,  as 
expected

i,x  '=i,B-C ,  (32)

where i,x  '=
di,x

dx
, and  where i,B-C is  the  stoichiometric  coefficient  of  Species  i  in 

Equilibrium 31:

- d [AzA ] = d [AzA ]  = dξ = AzA ,xdAzA,B-C dx (33)

- d [BzB ] = d [BzB ] = b(1-x)dξ- b dx = BzB,x dBzB ,B-Cdx (34)

- d [CzC ] = d [CzC ] = c x dξ+ c dx = C zC,x dCzC,B-C dx (35)

for the reaction corresponding to Equilibrium 30. The two advancements variables are ξ 
and  x,  corresponding  to  the  stoichiometric  coefficients i,x and i,x  ' respectively,  of 
Equilibrium30 with fixed x or [AzA ] (= ξ)  respectively:  this  confirms that  Equilibrium 30 
corresponds to a two advancement variable reaction including Equilibrium 31.

This is unusual and actually misleading: Lippmann strongly insisted that the usual form of 
the  law  of  mass  action  should  not  be  written  for  equilibria  "where  the  stoichiometric  
coefficients  are not  whole  numbers".  This  is  indeed the case of  Equilibrium 30,  where 
some of the stoichiometric coefficients can continuously vary with x:

AzA ,x = - AzA ,x = 1 (36)

BzB,x = - BzB,x = b(1-x) (37)

C zC,x = - C zC,x = c x (38)

Note that the stoichiometric coefficients appear to be also the concentrations in the solid 
phase:

AzA ,x = - AzA ,x = 1 = [AzA ] (36)

BzB,x = - BzB,x = b(1-x) = [BzB ] (37)

C zC,x = - C zC,x = c x = [CzC] (38)

A  reaction  with  two  advancement  variables,  stoichiometric  coefficients  that  are  also 
concentrations (in the solid phase): all this is well known, but easily misleading. Indeed it is 
well known that the law of mass action is not valid for Equilibrium 30, namely



Qx =
[AzA ] [BzB ]b(1-x) [CzC]cx

[AzA ] [BzB ]b(1-x) [CzC]cx  (39)

is not constant.

 3.5.2 The non-constant solubility quotient of the solid solution.

The value of Qx can be obtained as follows. ABb(1-x)Cx is considered as an ideal mixture of 
its end-members:

ABb(1-x)Cx = (1-x)ABb + x ACc (40)

For this reason the two law of mass action equations write

[A zA ] [BzB ]b

[A zA ] [BzB ]b
= [AzA ] [BzB ]b

1−x b
= Ks,B (25)

[AzA ] [CzC]c

[AzA ] [CzC]c
= [A zA ] [CzC]c

xc = Ks,C (26)

The linear Eq.40 suggests to consider (1-x)log Ks,B + x log Ks,C, or equivalently

Ks,B
1-x Ks,C

x =
[A zA ] [BzB ]b(1-x) [CzC]cx

[A zA ] [BzB ]b(1-x) [CzC]cx = [A zA ] [BzB ]b(1-x) [CzC]cx

1-x b(1-x) xcx  = Qx (41)

which confirms that Qx is not constant. Note that this equation is often considered alone, 
while two equations are needed. The second equation can typically be Eq.25, 26 or

Ks,C

Ks,B
=

[BzB ]b [CzC]c

[BzB ]b [CzC]c
=

1−xb [CzC ]c

[BzB ]bxc
= KC-B (42)

the constant of  Equilibrium 31: the law of mass action is the set of Eq.s25 and  26, or 
equivalently the set of Eq.s41 and 42, or any equivalent set of two equations, while one of 
the Eq.s41 or 42 is sometime considered alone in the literature. Similarly, starting from any 
pair of the above law of mass action equations the other equations can be obtained by 
linear combinations of the log of their equilibrium constants. Such linear combinations can 
correspond to thermodynamics cycles. However, the coefficients of the linear combination 
should be constant, which is not the case, when Qx is involved: as already pointed out 
introducing Qx is indeed misleading despite it is here correct as will be demonstrated below 
(Section 4.).

 3.5.3 Ionic exchange as derivative of dissolution and conversely
 3.5.3.1 Ionic exchange as derivative of dissolution.



Each  stoichiometric  coefficient i,B-C of  the CzC / BzB ion  exchange  Equilibrium 
(Eq.30) is obtained from the corresponding one i,x in the solubility equilibrium (Eq.31):

i,B-C =
di,x

dx
= i,x  '  (32)

where f' is for df/dx; which we summarize

Equilibrium 30 = (Equilibrium 31)' (43)

Consistently, Ks,C /  Ks,C = KC-B is the constant of Equilibrium 30 (Eq.69) and Ks,B
1−x  Ks,C

x = 
Qx the quotient for Equilibrium 31 (Eq.41): it appears that:

d lnQx
dx

= ln
Ks,C

Ks,B
= ln KC-B (44)

namely
(ln(Eq.41))' = ln(Eq.69) (45)

Ionic  exchange (31) is  included in the solubility  equilibrium (30).  Furthermore  (Eq.43), 
Equilibrium 31 can be consider as the "derivative" of Equilibrium 30, and this is even the 
case for their equilibrium constants (45). 

 3.5.3.2 Matrix as integral of ionic exchange.

Conversely, many ionic exchanges are well known and interpreted with the law of mass 
action (Eq.69) for Equilibrium 30. The equilibrium constant of the ionic exchange can very 
well be interpreted as the ratio of the solubility products of the end-members (Eq.69) of the 
ion exchanger matrix. By integrating (Eq.43) the solubility equilibrium of the ion exchanger 
matrix (Equilibrium 31) is obtained. They are several possible matrix, each corresponding 
to a different integrating constant (Eq.45), which provides the equilibrium quotient (Eq.41) 
of the resulting equilibrium (Equilibrium 30). Thus one obtains the two solubility products 
needed to described the system.

 3.5.3.3 Surface or liquid ion exchangers

As pointed out in the previous sections, integrating an ion exchange reaction (Eq.43) gives 
the dissolution reaction of its matrix from the aqueous solution. This can be generalized to 
those ion exchanges, where the matrix can be prepared by precipitation from aqueous 
solutions,  as typically minerals and their  surface;  but  in  the later  case,  supplementary 
pieces  of  information  are  needed to  know the  amount  of  surface  created  for  a  given 
quantity  of  reactants,  namely  the  volume  /  surface  ratio  -hence  transforming  surface 
"concentrations" into intensive variables-. For solid mineral ion exchangers, it  is indeed 
well  known that the dissolution reaction of the matrix can control the concentrations of 
some aqueous soluble species, and these aqueous species should be taken into account 
when interpreting experimental ion exchange data.



 3.5.4 Using mass action law equations.
 3.5.4.1 The equilibrium stoichiometry

There  are  sometimes  discussions  in  the  literature  on  how  to  obtain  the  (variable) 
stoichiometry  of  a  solid  solution  equilibrated  with  an  aqueous  solution  of  known 
composition.  For  this,  "stoichiometric  dissolution"  or  other  approaches  are  typically 
proposed.  This  is  surprising:  no  supplementary  hypothesis  seems  needed,  since 
thermodynamics  gives the concentrations of  all  the species in all  the phases for  ideal 
systems,  from mass balance and  equilibrium constants.  Note  that  no  new equilibrium 
constant is needed for solid solutions: only the solubility products of the pure components 
are  needed.  Typically,  x,  the  stoichiometry  in  the  solid  can  be  calculated  from  the 
concentrations of two of the aqueous species by using one of the following equations:

Ks,B = [AzA ] [BzB ]b

1−x b
 (25)

Ks,C = [AzA ][CzC ]c

xc  (26)

KC-B =
1−xb [CzC ]c

[BzB ]bxc
 (42)

 3.5.4.2 The saturation indexes of the end-members

Rearranging Eq.25 and 26 as

(1-x)b = [A zA ] [BzB ]b

K s,B

 (25)

xc = [A zA ] [CzC]c

K s,C

 (26)

it appears that the left members of the above equations are the saturation indexes of the 
end-members: their values are (1-x)b and xc. Consistently, they are smaller than 1, since 0 
≤ x ≤ 1, and the values of 0 and 1 correspond to the end-members.

 3.5.4.3 Slope analysis of solubility curves

The  law  of  mass  action  is  classically  used  to  interpret  experimental  data,  extracting 
equilibrium constants and stoichiometric coefficients from them. For Equilibrium 3 this can 
be done as follows. Eq.2 is rearranged

lg Ks,B = lg [AzA ] + b lg [Bz B] (2)

similarly, Eq.5 can be rearranged:



lg Ks,n,B = lg [AzA ] +(b-n) lg [ABn
zA−n zB] (5)

the log-log plot of the solubility of B is a straight line of slope (b-n), and the intercept gives 
the equilibrium constant, when ABn

z A−n zB is the major aqueous species of B. When the 
solid is known this provides the stoichiometries of aqueous species. Conversely this can 
provide the stoichiometry of the solid phase. In this later case:

b = −
d lg [Az A ]
d lg [B zB ]  (46)

(Eq.2).  Similarly,  for  solid  solutions  the  stoichiometry  is  obtained by deriving  Eq.25 at 
constant [CzC] , a constraint given by deriving Eq.26:

 ∂ lg [BzB ]
∂ lg [AzA ] [C zC]

=
−1

c 1−x


1
c
−

1
b  (47)

this result is similar to Eq.46 only when b = c. In that case  -c(1-x) =  -b(1-x) is both the 
stoichiometric coefficient of B and the slope of its solubility curve. Conversely, when this (b 
= c) simplification does not stand, the simple stoichiometric meaning of the slope does not 
stand any more. This, actually because when dissolving the solid at constant [CzC] , the x 
value change in the remaining solid solution when zB ≠ zC (this is equivalent to b ≠ c), 
namely  in  this  case  "stoichiometric  dissolution"  at  constant [CzC] is  not  possible  for 
electro-neutrality reason. Similarly

∂ lg [CzC]
∂ lg [AzA ][BzB]

=
−1
b x


1
b
−

1
c  (48)

lead to similar conclusions.

 3.5.4.4 Slope analysis for ion exchange equilibria

Equation

KB-C =
Ks,C

Ks,B
=

[BzB]b [CzC]c

[BzB]b [CzC]c
=

1−xb [CzC ]c

[BzB ]bxc
 (69)

is classically used to interpret the corresponding

b BzB + c CzC  b BzB + c CzC (31)

ion exchange equilibrium. Typically, the ion exchange matrix can initially be prepared in 
homo-ionic  form,  here  saturated with  Ion BzB. Now,  if  the  ion  exchanger  is  a  natural 



mineral this saturation preparation can as well be used to characterise the natural ions 
initially present in the ion exchanger. For this, one can typically use repeated lixiviations 
with concentrated aqueous solutions of BzB. It can easily be shown that log [CzC ] varies 
linearly with the number of lixiviations by aqueous solutions of same concentrations of

BzB in well chosen range of chemical conditions, and this gives the equilibrium constant 
of the corresponding ion exchange [83VIT page 91]. This saturation experiment can also 
give  the  ion  exchange  capacity  providing  the  affinity  of BzB is  high  enough.  This 
exchange capacity is needed to determine relevant concentrations in the ion exchanger. 
Now when this is done, Eq.69 is classically rearranged as

c logKd,C = b logKd,B - log KB-C (49)

where

Kd,Y =
[ Y ]
[Y ]  (50)

is measured form the aqueous concentrations and mass balance equations. Eq.49 can 
then be used for slope analysis, which provides the c/b ratio of stoichiometric coefficients, 
here it is also the ratio of the charges of the exchanged ions.

 3.5.5 Comparison with pure compounds.

Both  ABb(s)  and ACc(s) pure compounds can be simultaneously  stable,  when no solid 
solution is formed. Has already pointed out (Section 3.4.2.) adding a new solid phase -and 
the corresponding solubility product (Eq.2 for ABb(s) and ACc(s))- decreases by one the 
number of degrees of freedom of the system: Ratio

[CzC ]s,B,C
c

[BzB ]s,B,C
b =

Ks,C

Ks,B
 (51)

is  constant,  where  Subscript  s,B,C  is  to  stress  that  both  ABb(s)  and  ACc(s)  pure 
compounds are formed.  The ratio of two equilibrium constant is the constant of a new 

equilibrium (their difference):
Ks,C

Ks,B
(Eq.51) is the constant for Equilibrium

ACc(s) + b BzB  ABb(s) + c CzC  (52)

Using Eq.51

[CzC ]s,B,C
c

[BzB ]s,B,C
b =

Ks,C

Ks,B
= KC-B =

[BzB ]b [CzC]c

[BzB ]b [CzC]c
=

1−xb [CzC ]c

[BzB ]bxc
 (69)

It can be rearranged as



[BzB ]b

[C zC]c
= 1−xb

xc =
[BzB ]b

[CzC ]c
Ks,C

Ks,B
=

[BzB ]b [Cz C]s,B,C
c

[Cz C]c [BzB ]s,B,C

b =

 [Bz B ]
[Bz B ]s,B,C 

b

 [CzC]s,B,C

[CzC] 
c

:  

(69)

the ( [BzB ]b /[CzC]c and [Bz B]b/ [CzC]c) ratios of exchanged ions are usually not the same in 
the solid and aqueous phases:

● This ratio in the solid phase can be obtained from that in the aqueous solution in 
equilibrium conditions and conversely.

● The  so  called  "stoichiometric  dissolution"  does  not  correspond  to  equilibrium 
conditions.

● The constants of Equilibria 31 
(b BzB + c CzC  b BzB + c CzC ) and 52 
(ACc(s) + b BzB  ABb(s) + c CzC ) have  the  same  value,  consequently  it  is 
tempting to write that the difference between these two (31 and 52) equilibria is an 
equilibrium with an equilibrium constant of 1; but this interpretation is not correct 
because the result of this mathematical difference is not an equilibrium, since the 
solid phases involved in both equilibria cannot be simultaneously stable, namely the 
achievement of equilibrium conditions would typically result in the dissolution of the 
incorporation  of  impurities  by  the  end-members  transforming  them  in  the  solid 
solution.  The  common  aqueous  ions (BzB or CzC ) have  not  the  same 
concentrations when equilibrated with  these different  solid  phases.  Furthermore, 
using our notations inside the solid phases Equilibrium 52 writes exactly the same 
way as Equilibrium 31 assuming Az A can be simplified,  despite  it  is  in  the two 
different  (ACc(s)  and  ABb(s))  end-members,  this  assumption  is  correct  for  end-
members  that  can  form an  ideal  solid  solutions  in  any  proportion  (0  ≤  x  ≤  1): 
Notations Az A, BzB and CzC are  relevant  in  the  whole  range  of  chemical 
compositions for the solid solution including the end-members. Consequently the 
constants  of  Equilibria  31 and  52 have the  same value.  However,  this  is  a  bit 
misleading.

Conversely,
[BzB ]b [Cz C]s,B,C

c

[Cz C]c [BzB ]s,B,C

b = 1 = 1−xb

xc provides a value of x, typically when b = c this 

value of x is 0.5, corresponding to a mixture where none of the two end-members is at 
trace concentration. This x value -hence when the solid solution is stable- corresponds to 
the value of  the [Bz B ]b /[Cz C]c ratio identical  to that  when the two pure compounds are 
simultaneously stable.  However,  the concentrations are not  identical  in  both situations 
-ideal  solution  or  two pure  components- as typically  shown by the saturation indexes. 
Namely, introducing the [i]s,C,B notations in Eq.25 and 26

(1-x)b =
[ Az A ]

[A zA ]s,C,B
 [BzB ]
[BzB ]s,C,B


b

 (25)

xc =
[Az A ]

[A zA ]s,C,B
 [CzC]
[CzC ]s,C,B


c

 (26)



for  a  given  aqueous  concentration  of Az A the  concentrations  of BzB and CzC are 
divided by the same factor (1-x)b = xc. This decrease again illustrate that 

● The  -single solid phase- mixture is less soluble  -more stable- than the two end-
members. This is the well  known: pure compounds "should not be stable",  only 
mixtures  are  stable.  However,  this  is  true  only  for  ideal  mixtures.  Most  of  the 
mixtures  cannot  be  ideal  for  straightforward  geometrical  reasons.  Nevertheless 
according to the entropy principle "pure" compounds always include impurities.

● The decrease in solubility is not very important because x is neither close to zero, 
neither close to 1 when (1-x)b = xc. 

● Conversely, the decrease in solubility is important only when x is close to zero or 1 
corresponding to a solid solution virtually identical to end-member ABb(s) or ACc(s) 
respectively, and there is a dramatic decrease of the solubility of C (by xc) or B (by 
(1-x)b) respectively in the solid solution as compared to the solubility controlled by 
the ACc(s)  or  ABb(s)  pure compound respectively.  This is  possible only for  high 
enough concentrations of A.

● Now looking for conditions where the solubilities of both B and C are decreased, it 
is natural to restrict ourself to conditions where the same value is imposed for the 
saturation indexes of both pure compounds, namely (1-x)b = xc, which is actually 
where we started from in this section. For this reason it can also be considered as 
the maximum decrease of solubility for the solid solution as compared to the two 
pure components. This can as well be deduced from Eq.41.

Indeed, in this part we introduced the [i]s,C,B notations in the definition of several equilibrium 
constants. This can as well be done for

Qx =
[A zA ] [BzB ]b(1-x) [CzC]cx

[A zA ] [BzB ]b(1-x) [CzC]cx = [AzA ] [BzB ]b(1-x) [CzC]cx

1-x b(1-x) xcx  = Ks , B
1−x Ks , C

x =

[AzA ]s,B,C [BzB ]s,B,C
b(1-x) [CzC]s,B,C

cx

(41)

which can be rearranged as

1-xb(1-x) xcx = [AzA ] [BzB ]b(1-x)[CzC]cx =
[Az A ] [BzB ]b(1-x)[CzC ]cx

[A zA ]s,B,C [Bz B]s,B,C

b(1-x) [CzC ]s,B,C

cx (41)

 3.5.6 Summary of equations

Az A + b BzB  Az A + b BzB  (23)

Ks,B = [AzA ]s,C,B [BzB ]s,C,B
b =

[A zA ] [BzB ]b

[A zA ] [BzB ]b
= [AzA ] [BzB ]b

1−x b
 (25)

Az A + c CzC  Az A + c CzC  (24)



Ks,C = [A zA ]s,C,B [CzC]s,C,B
c =

[Az A ][CzC ]c

[Az A ][CzC ]c
= [AzA ][CzC ]c

xc  (26)

b BzB + c CzC  b BzB + c CzC (31)

Ks,C

Ks,B
=

[CzC ]s,B,C
c

[BzB ]s,B,C
b =

[BzB]b [CzC]c

[BzB]b [CzC]c
=

1−xb [CzC ]c

[BzB ]bxc
 (69)

Az A + b(1-x) BzB + c x CzC  Az A + b(1-x) BzB + c x CzC (30)

Ks,B
1−x Ks,C

x = [AzA ]s,B,C [BzB ]s,B,C
b(1-x) [CzC]s,B,C

cx =
[AzA ] [BzB ]b(1-x) [CzC]cx

[AzA ] [BzB ]b(1-x) [CzC]cx =

[A zA ] [BzB ]b(1-x) [CzC]cx

1-x b(1-x) xcx  = Qx 
(41)

 3.5.7 Approximations for trace concentrations

When C is at trace concentrations:

Ks,B = [A zA ]s,C,B [BzB ]s,C,B
b =

[A zA ] [BzB ]b

[A zA ] [BzB ]b
≈ [AzA ] [BzB ]b  for x<<1 (25)

Ks,C = [A zA ]s,C,B [CzC]s,C,B
c =

[Az A ][CzC ]c

[Az A ][CzC ]c
= [AzA ][CzC ]c

xc  (26)

Ks,C

Ks,B
=

[C zC ]s,B,C
c

[B zB ]s,B,C

b =
[BzB]b [CzC]c

[BzB]b [CzC]c
≈

[CzC]c

[BzB ]b xc
 for x<<1 (69)

Ks,B Ks,C
x ≈ [AzA ]s,B,C [BzB ]s,B,C

b [CzC ]s,B,C
cx ≈

[AzA ] [BzB ]b [CzC]cx

[AzA ] [BzB ]b [CzC]cx ≈ [A zA ] [BzB ]b [CzC]cx

xcx

≈ Qx for x<<1

(41)

Ks,C

Ks,B
=

[CzC ]s,B,C
c

[BzB ]s,B,C

b =
[BzB]b [CzC]c

[BzB]b [CzC]c
=

1−xb [CzC ]c

[BzB ]bxc
 for x<<1 (69)

It  essentially  appears  that  the  partition  equilibria  equation  is  not  changed  for  ACc(s) 
(Eq.26), while the solubility product equation (Eq.25) is now virtually valid for ABb(s). This 
can be checked experimentally as follows. C is introduced (at trace concentrations) in an 
aqueous  solution  used  to  precipitate  ABb(s).  The  solubility  product  law is  checked  by 
classical slope analysis (Section 3.5.4.3.). When the uptake of C (by ABb(s)) is important, 
the remaining C aqueous concentration also gives precisely the amount of C in the solid, 
namely  x,  which  finally  allows  to  check  Eq.s26 and  69:  log-log  plot  gives  c,  the 
stoichiometric coefficient  and the equilibrium constant.  Note that  this involves free  -not 
total- aqueous concentrations,  which need to be deduced from independent studies in 



homogeneous aqueous solutions or from published complexing constants (see typically 
Eq.4). 

C can also be introduced in an aqueous solution already equilibrated with ABb(s). A rapid 
uptake of  C by the ABb(s)  surface is  expected, while further penetration of  C into the 
ABb(s) bulk is much slower. The amount of C that has penetrated inside the solid can still 
be known, but it is difficult to deduce x, its concentration, because it must be divided by the 
total  surface  or  the  total  volume (of  ABb(s)  contaminated  by C),  which  are  not  easily 
known. However, the surface or the volume factor cancels out when considering several 
analogue trace elements for checking they actually have similar behaviours by observing 
ratios of their concentrations. This also allows to use surface concentrations, despite they 
are not intensive variables.

 3.6 Toward real solid solutions.
 3.6.1 Vacancies

Up to now, we considered ideal solid solutions of stoichiometry ABb(1-x)Ccx without paying 
much attention to their  microscopic structures,  since their  thermodynamics descriptions 
only require the solubility products of their (ABb(s) and  ACc(s)) end-members, and their 
stoichiometries -these stoichiometries are given by electro-neutrality-. Ideal (or near ideal) 
solid  solution  means  that  substituting  B  by  C  does  not  much  modify  the  matrix,  the 
chemical  potentials  of  the other atoms and finally the chemical  potentials  of  B and C; 
hence their geometric environments are virtually the same in the solid solution and in the 
end-members. This is clearly possible when C is an isotope of B, or at least a chemical 
analogue, namely an ion with same charge and similar size and coordination chemistry. 
Conversely, this might appear impossible when B and C are ions of different charges. 
Nevertheless, exchanges in minerals are known for ions with different charges. This is 
typically the case for clays. In clays, a few Si4+ tetra-cations are substituted with Al3+ tri-
cations in matrix layers, charge compensation is obtained by exchanging cations in inter-
layers. It is still debated whether the inter-layer cations are fixed on specific anionic sites of 
the matrix layer surface, or less ordered. Other ion exchanger minerals can be described 
with typically O2- matrix, where only some of the cationic sites are occupied. We here give 
one generic example based on such idea. We imagine a matrix, where the minimum cell 
contains  nA atoms  A.  For  simplicity,  we  assume that  all  the  matrix  sites  that  can  be 
occupied by A are indeed occupied by A. Conversely,  some of the sites that could be 
occupied by B or C could be vacant. For electro-neutrality, the stoichiometry of the unit cell 
is still given by b and c, it is now 

nA ABb(1-x)Ccx = AnA
BnA b(1-x) CnA cx

= nA Az A + nA b(1-x) BzB + nA c x CzC +(n-A - nA(b+(c-b)x)) v
(53)

where v are vacancies in the solid, nv = n-A - nA(b+(c-b)x) the number of vacancies and 
n-A the  total  number  of  sites  for  A  counter-ions. AnA

BnA b(1-x) CnA cx is  rather  a  mean 
stoichiometry: A and B -hence vacancies- are placed at random in the sites of A counter-
ions.  This disorder allows continuous variations of x.  Conversely, when virtually all  the

AnA
BnA b(1-x) CnA cx cells  are exactly the same, it  rather  appears as a new stoichiometric 

compound for each x value, and in this case there are only a limited number of possibilities 
for the x values, because nA is a fixed finite integer. The concentrations in the solid are 
chosen as follows



[AzA ] = 1 (36)

[Bz B] = b(1-x) (37)

[CzB ] = c x (38)

[v ] = a-b+(b-c)x (54)

where

a=
n-A

nA
(55)

Note that when a = b or a = c there is no vacancies in ABb(s) or ACc(s) respectively: when 
B  and  C  are  of  different  charge  a =b =c  is  not  possible,  and  there  are  necessarily 
vacancies in the solid solution and at least in one of the end-members. The end-members 
are 

nA ABb(s) = AnA
BnA b (s) = nA A z A + nA b BzB + nA(a-b) v  (56)

nA ACc(s) = AnA
CnA c (s) = nA A z A + nA c CzC + nA(a-c) v (57)

The stoichiometric coefficients are integers, specially (n-A - nA b) = nA(a-b) and (n-A - nA c) = 
nA(a-c). Previous equations (their numbers are italicized) are changed as follows

Az A + b BzB +(a-b) v  Az A + b BzB  (23) (58)

Ks,B (a-b)a-b=
[Az A ] [BzB ]b

1−x b a-b+(b-c)x a-b  (25) (59)

Az A + c CzC +(a-c) v  Az A + c CzC  (24) (60)

Ks,C (a-c)a-c=
[Az A ] [CzC]c

x ca-b+(b-c)x a-c  (26) (61)

b BzB + c CzC +(b-c) v  b BzB + c CzC (31) (62)

Ks,C (a-b)a-b

Ks,B(a-c)a-c =
1−xb [CzC]c

[BzB ]bxc
a-b+(b-c)xc-b  (69) (63)

Az A + b(1-x) BzB + c x CzC +(a-b+(b-c)x) v

 Az A + b(1-x) BzB + c x CzC       (30)
(64)

Ks,B (a-b)a-b1−x Ks,C (a-c)a-c x = [AzA ] [BzB ]b(1-x) [CzC]cx

1-x b(1-x) xcxa-b+(b-c)xa-b+(b-c)x  (41) (65)

For  qualitative  discussion,  let  us  simplify  to  the case,  where  there are  no  vacancy in 
ABb(s), while there are still vacancies in ACc(s): in this case a = b (Eq.56),  Eq.59 is now 



identical  to Eq.25, while Eq.61 is simplified into Ks,C (b-c)2(b-c)=
[AzA ] [CzC ]c

x b ; which is still 

different  from Ks,C=
[AzA ] [CzC ]c

x c (Eq.26):  the  exponent  of  x  is  changed  from  b  to  c. 

Similarly,  Eq.63 simplifies  into
Ks,C

Ks,B
= 1-x

x 
b [CzC ]c

[BzB ]b
, which  is  different  from

Ks,C

Ks,B
=

1−xb [CzC]c

x c [BzB ]b
(Eq.69). This illustrates that introducing vacancies really changed the law 

of  mass  action  equation,  and  the  corresponding  slope  analysis  as  typically  based  on 
Eq.49.  However,  this  needs confirmations:  to  our  knowledge such equations does not 
seem  to  have  been  published.  As  already  pointed  out,  the  exponent  stoichiometric 
coefficients are classically determined experimentally by slope analysis of log-log plot for 
relevant  experimental  partition  or  solubility  measurements.  Nevertheless,  several  other 
physical and chemical phenomena can also change such slopes:

● Complexation in the aqueous phase, this can be qualitatively taken into account by 
writing the chemical equilibria with the major species (see typically Eq.4 and 5) or 
quantitatively  by  aqueous  equilibrium  calculations,  namely  by  calculating  the 
concentrations of the free aqueous species from the chemical composition of the 
aqueous  solution.  This  is  classical  and  there  is  no  need  to  include  these 
complications in the present paper. Note that this results in different stoichiometries 
for the ions in the aqueous and solid phases.

● Chemical reactions with the water HO- or H+ ions.
● Non-ideality, which explains that most of the solid solutions are not formed, while as 

already pointed out,  the saturation indexes of the end-members are always less 
than 1 if an ideal solid solution can form. Pure compounds would not exists, only 
solid  solutions.  This  is  actually  the  entropy  principle,  which  explains  there  are 
always default and impurities in real solids.

Furthermore,  when  a = c  Eq.63 simplify  into
Ks,C

Ks,B
c-b 2(c-b) = 1-x

x 
c [CzC]c

[BzB ]b
, which  is 

different from
Ks,C

Ks,B
=

1−xb

xc

[CzC]c

[BzB ]b
(Eq.69): again the exponent of x is changed, it is no 

more controlled by electro-neutrality. The same remark can be deduced from Eq.41 and 
65.

Excepted in these particular cases (a = b or c) and in cases closed to them (a ≈ b or c, i.e. 
only  very  few  vacancies  in  one  of  the  end-members  as  compared  to  the  number  of 
occupied B or C sites), vacancies do not seem to induce major changes: in the above 
equations equilibrium constants are multiplied by constant ((a-b)a-b or (a-c)a-c) terms and by 
a term originated in the concentration of vacancies, which now does not vary much. The 
concentration of vacancies is [v ] = a-b+(b-c)x (Eq.54): it linearly varies between a-b and 
a-c, since 0 ≤ x ≤ 1. Instead of lg [v ] we use its mean value <lg v> = [lg(a-b) + lg(a-c)]/2 
with the corresponding uncertainty δlg v = |lg(a-b) - lg(a-c)|/2. With this approximation,

● Eq.59 is Eq.25, where Equilibrium Constant Ks,B, is no more exactly constant: lg Ks,B 

is changed to [lg Ks,B +(lg(a-b)+<lg v>± δlg v)(a-b)].
● Eq.61 is Eq.26 where Ks,C is changed to [lg Ks,C +(lg(a-c)+<lg v>± δlg v)(a-c)]

and similarly for Eq.63 and 65.



Finally,  except  for  very  specific  cases,  it  does  not  seem  that  introducing  vacancies 
qualitatively changes the equations. This  a posteriori justify not to have taken them into 
account at the beginning of this paper. Nevertheless, introducing vacancies pointed out the 
importance  of  correctly  describing  the  structure  of  the  solid  solution  -and  this  is  not 
straightforward- to  obtain  the  correct  stoichiometric  coefficients.  Indeed,  stoichiometric 
coefficients correspond to the actual number of exchanged ions, they are also linked to 
electro-neutrality  and  reasonable  coordination  chemistry.  All  these  properties  where 
merged in the simplified stoichiometric  description we used before taking into account 
vacancies.

 3.6.2 Non-ideal solid solutions.

Adding a solute (or exchanging it) in an ideal system do not modify the rest of the system. 
This is a usual starting point to treat a real system considered as an ideal system with 
small modifications. Conversely, when such an ideal system cannot be identified  -trying 
various unit cell of different stoichimetries and geometries-, there is no special reason to 
use the law of mass action.

 3.6.3 Distortion of the matrix and identification of the geometry.

Adding new ions in vacant sites of the matrix, or exchanging ions of different sizes more or 
less  modifies  the  geometry  of  the  matrix.  As  a  result,  the  same  geometry  can  be 
considered as deriving from different  ideal  geometries,  and it  is  not  straightforward to 
identify the most relevant basic cell  -and corresponding stoichiometries- to describe solid 
systems.

 3.7 Comparing aqueous and solid solutions
 3.7.1 Introduction

The description of  our  ABb(1-x)Ccx solid solutions did not specially seem to use that  the 
matrix  of this solution is solid:  one can wonder to which extend this approach can be 
generalized. On the other hand stoichiometries are given by the electro-neutrality, which is 
not specially the case for aqueous solutions. It seems we essentially had to define the 
stoichiometry of the reaction to write the corresponding law of mass action equations. This 
seems to be possible in any type of solutions: bulk solids, surfaces, liquid. In this part we 
consider  such  comparisons.  For  this  we  essentially  compare  our  solid  solution  with 
aqueous  solutions,  outlining  a  few  usual  chemical  concepts  as  typically  solvation, 
complexation,  coordination  chemistry...  that  actually  all  more  or  less  deal  with  the 
stoichiometric description of the system.

 3.7.2 Solvation and complexation

In aqueous solutions, water molecules are usually not written in chemical reactions and 
the corresponding equilibria, because the activity of water is constant (= 1): it must not be 
written in the law of mass action. They are a few specific exception when writing H2O in an 
equilibrium is needed for mass balance or when considering ionic strength corrections: in 
that case the activity of water is no more 1 (the activity of the solvent is 1; but the solvent is 
no  more  pure  water),  it  can  be  measured  by  typically  measuring  its  partial  pressure 
equilibrated with the aqueous solution. We do not considered these specific cases.

Notation BzB is for BzB(aq), where (aq) is often omitted (as we did here for simplicity) 
despite one or even two hydration layers of the BzB central ion can usually very well be 



identified. One can typically admit that the number of water molecules more or less fixed 
by BzB is negligible and this does not change the size of the system -determined by the 
total number of water, while intuitively one would rather consider only bulk water- neither 
the mean activity of water. Actually, when this approximation does not stand any more, this 
is classically taken into account by activity coefficients, since the activity of water can be 
calculated from the mean activity coefficient. Again we do not consider here such small 
corrections.

In our solid solution, the equivalent of water -the solvent- is the matrix. In our description it 
is represented by Az A. Note that for the BzB/CzC ion exchange equilibrium (Eq.31) we 
indeed did not write Az A because it cancels out, despite the matrix is implicitly here. As a 
consequence  -for  mass  balance- we  neither  wrote Az A. Conversely,  for  all  the  other 
equilibria  we had  to  write Az A: this  because  they  actually  correspond to  reactions  of 
dissolution  of  the  matrix,  namely AzA is  dissolved.  This  is  a  difference  with  aqueous 
solutions.

This is a bit misleading: when AzA is in the solid phase it is the solvent for BzB, while in 
aqueous  solution Az A can  very  well  be  a  ligand  for BzB to  form  a  complex  (Eq.4). 
Coordinations are usually different between aqueous and solid phases, nevertheless they 
are the same in some special  cases as typically  aqueous limiting complexes and well 
chosen solid compounds, and this is experimentally used. For this reason, it is tempting to 
write ABn

z A−n zB instead of BzB, where n is the number of A ligands in the solid. This can 
very  well  be done for  Equilibrium 31,  hence writing ABn

z A−n zB and ACp
z A−p zC instead of

BzB and CzC respectively, where mass balance is obtained by adding (n-p) AzA . This 
does not introduce any new term in the corresponding equilibrium constant since [AzA ] = 
1. It is clear that such procedure is possible only for equilibria that do not correspond to 
any dissolution / precipitation of the matrix. In this later case stoichiometric coefficients are 
controlled by electro-neutrality as for pure compounds.

 3.7.3 Coordination chemistry

BzB and CzC are  coordinated  to Az A in  the  solid,  but  this  is  not  reflected  in  the 
stoichiometry,  because Az A also  stands  for  the  matrix,  as  explained  in  the  previous 
section. Furthermore, in our relatively simple solid solution Az A is necessarily the only -or 
at  least  the  major- ligand  of BzB and CzC . Nevertheless,  several  coordinations  are 
possible, corresponding to different sites for BzB or CzC : see the next section.

 3.7.4 Several types of sites for the same ion

Several types of sites can exist for BzB or CzC : typically BzB1 and BzB2 for BzB, where 
it is not needed to indicate the corresponding coordination chemistry, namely the number 
of Az A ligand, despite this number is certainly different for each site, because Az A also 
stands for the matrix (see Sections 3.7.2. and 3.7.3.). Equilibrium between these two sites 
simply  writes BzB1  BzB2 . The  corresponding  equilibrium  constant  is  K  =
[ BzB1 ] /[ Bz B2 ] . This ratio is constant. For this reason it does not seem specially needed to 

writes  equilibrium  constants  with  two  sites: [Bz B] = [ BzB1 ][ BzB2 ] can  be  used,  in  the 
same way as in aqueous solution [†CO2] is usually written for [CO2(aq)] + [H2CO3(aq)].



 4 Law of mass action for solid solutions, a demonstration.
 4.1 Introduction.

We have seen that the law of mass action has correctly been used in the literature, and 
demonstrated  by  typically  Lippmann,  who  also  already  gave  most  of  the  comments 
needed to understand the chemical meaning of such thermodynamics description. One 
important point is that for a two end-members mixtures the law of mass action is a set of 
two equations. Consequently, combining such equations give equivalent sets of equations: 
the law of mass action does not have a unique form. As usual, the scientific basis of these 
equations are often forgotten. Furthermore, the non-constant solubility product equation 
became quite  popular  despite,  as  pointed  out,  it  is  a  quite  unusual,  a  bit  misleading 
equations  with  two  advancement  variables,  non-constant  stoichiometric  coefficients, 
stoichiometric coefficients that also are concentrations... we chose to start directly from 
this equation to give a demonstration of law of mass action. Before this we briefly recall the 
most  simple  correct  demonstrations  already  published  by  Lippmann  and  Michard. 
However we will use our own notations and concentrations units, specially because mole 
fraction  are  intensive  variable  only  in  particular  cases:  in  several  cases  they  are  not 
concentration units. It is first important to obtain a correct description for the stoichiometry 
of the solid solution. This is not given by thermodynamics. This specially provides what is 
the matrix, whether all its anionic and cationic sites are occupied, if not vacancies should 
be taken into account. We already showed that above. Nevertheless, for simplicity,  we 
here only consider the simple ABb(1-x)Cx solid solution. 

 4.2 A quick way to write the law of mass action for solid solutions.

We use Notation

(1-x)ABb + x ACc = ABb(1-x)Ccx = Az A + b(1-x) BzB + c x CzC  (20)

which means we know -usually from structural observation- that the ABb(1-x)Cx stoichiometry 
corresponds to a unique structure for  0  ≤ x  ≤ 1,  specially  the ABb(s)  and ACc(s) end-
member must be in this structure with eventually vacancies that should then be explicitly 
written (Eq.53). The law of mass action for Equilibria

ABb(s) = Az A + b BzB  Az A + b BzB  (66)

ACc(s) = Az A + c CzC  Az A + c CzC  (67)

writes

KA-B =
[AzA ] [BzB ]b

[AzA ] [BzB ]b
= [AzA ] [BzB ]b

1−x b
= Ks,B (25)

KA-C =
[Az A ][CzC ]c

[Az A ][CzC ]c
= [AzA ][CzC ]c

xc = Ks,C (26)

where  equilibrium  constants KA-B and KA-C appear  to  be  the  Ks,B and  Ks,C solubility 
products of the end-members for the limiting cases x = 0 and 1 respectively. From Eq.25 
and 26 the two classical equations



Ks,B
1-x Ks,C

x =
[AzA ] [BzB ]b(1-x) [CzC]cx

[AzA ] [BzB ]b(1-x) [CzC]cx = [AzA ] [BzB ]b(1-x) [CzC]cx

1-x b(1-x) xcx  (41)

Ks,C

Ks,B
=

[BzB]b [CzC]c

[BzB]b [CzC]c
=

1−xb [CzC ]c

[BzB ]bxc
(42)

are deduced. They correspond to Equilibria

Az A + b(1-x) BzB + c x CzC  Az A + b(1-x) BzB + c x CzC (30)

b BzB + c CzC  b BzB + c CzC (31)

In this part, we will demonstrate the law of mass action for Equilibrium 30. For this we will 
first demonstrate the usual form of law of mass action for pure solids, namely solubility 
products.

 4.3 Law of mass action for pure compounds.

The thermodynamic demonstration of the law of mass action is obtained by minimising the 
Gibbs Energy of the system at constant P ant T ((dG)P,T = 0):

0 = µAzA dnA zA + µBzB dnBzB + µABB (s) dnABB (s)  (68)

for the Az A / BzB / ABb(s) system, where µi is the chemical potential of Species i, and ni 

its number of moles. For Equilibrium

ABb(s)  Az A + b BzB,  (3)

dnAz A = dξ (28)

dnBz B = b dξ (29)

dnABb(s) = -dξ (69)

Reporting Eq.28, 29 and 69 into Eq.68

0 = µAzA + b µBzB - µABb (s)  (70)

the definition of ai, the absolute activity of Species i, is

µi = µi
o + R T ln ai (71)

with the supplementary definitions in the reference state ai =1 hence µi = µi
o . µi

o is 
another notation for  f Gi

o , the molar Gibbs energy of formation of Species i. For ideal 



systems ai = mi/mi
o , where mi is the molal concentration of Species i, and 1 = mi

o is the 
value of mi in the reference state when i is an aqueous species. mi

o is often omitted. 
Similar definitions stand for species in each phase. However, the chemical potential and 
activity of the solid are constant:

µABB (s) = µABB (s)
o  (72)

Reporting Eq.71 and 72 into Eq.70

0 = r Gs,b
o + R T lnKs,B

o  (73)

where
r Gs,b

o = µAzA

o + b µBzB

o - µABB (s)
o  (74)

Ks,B
o = aAzA  aBzB

b  (75)

which is the solubility product law. It is Eq.(2) taking into account non-ideality, namely

Ks,B
o = Ks,B aAzA  BzB

b  ϱ1+b  (76)

where BzB , the activity coefficient of BzB is defined as 

aBzB =
mBzB

mBzB

o BzB  (77)

and ϱ = V/m is the factor for the conversion of molar to molal concentrations: V is the 
volume (dm3) of solution containing m kg of water. Medium effects are thus included in 
Ks,B.  Classically,  constant high concentration of a strong electrolyte is used to obtain a 
constant aqueous medium, where the values of ϱ and i are virtually constants. In that 
case  a  new  ideal  aqueous  solution  is  obtained,  which  indicates  that  Ks,B has  similar 
thermodynamics meaning as Ks,B

o : the only difference is the reference state.

 4.4 Law of mass action for solid solutions.
 4.4.1 A demonstration

We use the same type of demonstration as for the solubility product of the ABb(s) pure 
compound (Section 4.3.).  The main difference is at the beginning when calculating dni, 
(Eq.28,  29 and  69): for this reason we give more details on these equations, while the 
following ones are only mathematical consequences. Note that

i,B-C =
di,x

dx
 (32)

where i,x is the stoichiometric coefficient of Species i in Equilibrium



Az A + b(1-x) BzB + c x CzC  Az A + b(1-x) BzB + c x CzC , (30)

and i,B-C is the stoichiometric coefficient of Species i in Equilibrium

b BzB + c CzC  b BzB + c CzC (31)

Typically, dnBz B, 0 = BzB, 0d = b dξ for Equilibrium 3 is only the first term of dnBz B when x 
varies as typically in Equilibrium 30: for Equilibrium 30 this first term is indeed ∂nBzB, x x =

∂nBzB,x

∂ 
x
d = BzB, x d = b(1-x) dξ. Similarly dnAz A, 0 = AzA ,0 d = dξ and ∂nAzA , xx =

AzA , x d = dξ: it appears that ξ is an advancement variable for both equilibria, and in 
both  cases  it  corresponds  to nAz A . Consequently,  the  second  term  of dnBz B, x can  be 
obtained  as ∂nBzB, x  = ∂nBzB, x n

A
zA

= dBzB, x =  -b dx.  Note  that  (Eq.32) dBzB, x =
BzB, B-Cdx. Such  calculation  is  performed  for  each  species:  we  here  reproduce  the 

equations  already given for  pure  compounds,  we italicize  them,  and we add the  new 
equations modified for taking into account variable stoichiometry in the solid. 

ABb(s)  Az A + b BzB  (3)

Az A + b(1-x) BzB + c x CzC  Az A + b(1-x) BzB + c x CzC (30)

dnAz A, 0 = dξ (28)

−dnAzA , x = dnAz A, x = ∂nAzA , x

∂ 
x
d∂nAzA , x

∂ x 

dx = AzA , x dAz A,B-Cdx

= dξ

(33)

dnBzB , 0 = b dξ (29)

−dnBzB , x = dnBz B, x = ∂nBzB,x

∂ 
x
d∂nBzB,x

∂ x 

dx = BzB, x dBzB ,B-C dx

= b(1-x)dξ - b dx 

(34)

Similarly

−dnC zC, x = dnCzC , x = ∂nCzC , x

∂ 
x
d∂nCzC , x

∂ x 

dx = C zC, x dC zC, B-Cdx

= c x dξ + c dx 

(78)

Eq.(69) is now included in Eq.33, 34 and 78. Equation

0 = µAzA dnA zA + µBzB dnBzB + µABB (s) dnABB (s)  (68)

now writes



0 = µAzA dnA zAµBzB dnBzBµCzC dnCzC−µAzA dnAzAµBzB dnBzBµCzC dnCzC  (79)

Substituting Eq.33, 34 and 78 into Eq.79, and using Notation

δY = µYzY−µYzY ,  (80)

 0 = AzA AzA , x ddAzA , xBzB BzB ,x ddBzB, x CzC CzC , x ddCzC , x
= ∑

i=A,B,C
i,xid ∑

i=A,B,C
i,B-C idx

= AzAb(1-x)BzBc xCzCd-bBzBcCzC dx

(81)

Since ξ and x are two independent variables Eq.81 is actually two equations, 

{0=AzAb(1-x)BzBc xCzC

0=-bBzBcC zC
  (82)

consistently the first  one corresponds to the law of  mass action  for  Equilibrium 30 (of 
stoichiometric coefficients i,x) and the second one for Equilibrium 31 (of stoichiometric 
coefficients i,B-C ). Indeed,  the  law  of  mass  action  is  classically  obtained  as  follows. 
Reporting Equation

µi = µi
o + R T ln ai (71)

into Eq.82

{0=r Gx
oR T lnKx

o

0=r GB-C
o R T lnKB-C

o   (83)

Is obtained, where
r Gx

o=AzA

o b(1-x)BzB

o c xCzC

o  (84)

r GB-C
o =-bBzB

o cC zC

o  (85)

Kx
o=

aAzA aBzB

b(1-x) aCzC

cx

aAzA aBzB

b(1-x) aCzC

cx  (86)

KB-C
o =

aBzB

-b aC zC

c

aBzB

-b aC zC

c  (87)

Eq.86 and 87 are the law of mass action for Equilibria 30 and 31 respectively. Note that 
Kx

B-C is constant (Eq.85), while Kx
o is not, since it depends on x (Eq.86). 

 4.4.2 Number of thermodynamics constants.

We have introduced three thermodynamics constants: AzA

o , BzB

o and CzC

o ; but we will 



see  that  two  are  enough. r GB-C
o already  depends  on  only  two  of  these  constants 

(Eq.85);  but r Gx
o indeed  depends  on  the  three  AzA

o , BzB

o and CzC

o constants 
(Eq.84); to demonstrate that r Gx

o depends only on two constants Eq.84 is rearranged 
as follows:

- R T lnKx
o

= r Gx
o=AzA

o b(1-x)BzB

o c xCzC

o

= (1-x)A zA

o bBzB

o x AzA

o cC zC

o 
= (1-x)rGA-B

o xr GA-C
o

= -R T ln KA-B
o 1-x KA-C

o x  

(84)

where
- R T lnKA ,B

o =r GA-B
o =AzA

o bBzB

o  (88)

- R T lnKA ,C
o =rGA-C

o =AzA

o c CzC

o  (89)

This calculation actually demonstrates that the Kx
o function of x writes 

Kx
o = KA-B

o 1-x KA-C
o x  (84)

and that Kx
o -or equivalently r Gx

o - depends on only two constants: KA-B
o and KA-C

o ;
despite  we  had  initially  introduced  three  constants: AzA

o , BzB

o and CzC

o . Of  course,
KB-C

o depends  also  of  the  same parameters.  To demonstrate  this,  the  same type of 
rearrangement can be made for Eq.85:

- R T lnKB-C
o

= r GB-C
o =-bBzB

o cC zC

o

= AzA

o cCzC

o −AzA

o bBzB

o 
= r GA-C

o −r GA-B
o

= -R T ln
KA-C

o

KA-B
o  

(85)

namely

KB-C
o =

KA-C
o

KA-B
o  (85)

 4.4.3 Partition equilibria.

Reporting Eq.86 and 87 into Kx
o = KA-B

o 1-x KA-C
o x (Eq.84) and KB-C

o =
KA-C

o

KA-B
o (Eq.85):



KA ,B
o =

aAzA aBzB

b

aAzA aBzB

b  (90)

KA ,C
o =

aAzA aCz C

c

aAzA aCz C

c .  (91)

KA-B
o and KA-C

o appear to be the constants for the partition equilibria

Az A + b BzB  Az A + b BzB  (66)

Az A + c CzC  Az A + c CzC  (67)

Eq.90 and  91 are  the  law  of  mass  action  for  Equilibria  66 and  67,  and  this  can  be 
demonstrated exactly in the same way as Eq.85 for Equilibrium 31.

Note that KB-C
o =

KA-C
o

KA-B
o (Eq.85) merely reflects that Equilibrium

b BzB + c CzC  b BzB + c CzC (31)

can be obtained by the Equilibirum 31 = Equilibirum 67 - Equilibirum 66 thermodynamics 
cycle from Equilibria 66 and 67. Now, the same type of mathematical calculation for Kx

o =
KA-B

o 1-x KA-C
o x (Eq.84)  would  give Equilibirum 30 =  (1-x)Equilibirum 66 + 

x Equilibirum 67, which is not a thermodynamic cycle since  1-x and x are not constant, 
they actually represent concentrations. This explains why Kx

o is not constant: it does not 
correspond to a classical chemical equilibrium or reaction. 

Note that we started from Equilibria 66 and 67 characterized Kx
o and KB-C

o . Conversely, 
following a Lippmann type approach one can start from KA-B

o and KA-C
o to obtain Kx

o =

KA-B
o 1-x KA-C

o x (Eq.84)  and KB-C
o =

KA-C
o

KA-B
o (Eq.85);  namely, KA-B

o and KA-C
o have 

actually be obtained as

KA-B
o =

K x
o

KB-C
o x

 (92)

KA-C
o =Kx

o KB-C
o 1-x  (93)

 4.4.4 Standard state.

The standard state of aqueous solutions is the pure solvent. A similar definition would not 
be convenient for solid solutions, since it would correspond to the "pure matrix", which is a 
concept far from any real solid. Anyhow, we have not the choice of standard state for 



solids, it  is already defined through the standard solubility products. Namely,  when the 
solid solution has the composition of an end-member the solid solution description must be 
consistent with the standard state as reflected in the solubility product.  In such limiting 
conditions, there has two ways to describe the solid solution,  one way is the solubility 
product, typically for End-member ABb

Ks,B
o = aAzA , ABb

aBzB, ABb

b  (75)

where subscript  ABb is  to  stress that  the aqueous solution is  saturated with  ABb.  The 
second way is to use Eq.86 where x = 0 which appears to be Eq.90:

KA ,B
o =

aAzA , ABb
aBzB , ABb

b

aAzA , ABb
aBzB , ABb

b  (90)

from which

KA ,B
o =

K s,B
o

aAzA , ABb
aBzB , ABb

b  (90)

Similarly for x = 1

KA ,C
o =

K s,C
o

aAzA , ACc
aCzC , ACc

c  (91)

It is now needed to define the values of ai , Ajq the activities in the solid solution when it 
corresponds to one of the pure compounds. As in liquid solutions, this is defined with the 
concentration  units.  This  because  the  standard  state  is  an  ideal  solution  where 
concentrations can be used as activities. The concentration units we have used up to now 
are

[AzA ] = 1, [Bz B] = b(1-x) and [CzC ] = c x (12)

namely  for  x = 0, aAzA , ABb
=  1, aBzB, ABb

=  b, aCzC , ABb
=  0,  while  for  x = 1, aAzA , ACc

=  1,
aBzB, ACc

= 0, aCzC , ACc
= c. Using these definitions:

KA ,B
o =

Ks,B
o

bb  (90)

KA ,C
o =

Ks,C
o

cc  (91)

 4.4.5 Activity coefficients.

i , the activity coefficient is classically defined as 



ai =
mi

mi
o i  (77)

for Aqueous Species i, where mi is its molal concentration, and 1 = mi
o is the value of mi 

in the reference state. mi
o is often omitted. The reference state is an ideal solution, where 

ai = mi/mi
o , or equivalently i = 1. Similarly in the solid solution

ai = aY=
[Y]
[Y ]o

Y  (94)

where
[AzA ] = 1, [Bz B] = b(1-x) and [CzC ] = c x (12)

Using these concentration units:

Ks,B
o = bbKA,B

o = Ks,B,m Ks,B
exc (90)

Ks,C
o = cc KA,C

o = Ks,C,m Ks,C
exc  (91)

where

Ks,B,m =
mAzA mBzB

b

b(1-x)b (90)

Ks,C,m =
mAzA mC zC

c

c xc  (91)

are the molal solubility products, and

Ks,B
exc =

Az ABzB

b

Az ABzB

b  (95)

Ks,C
exc =

Az ACzC

c

Az ACzC

c  (96)

where i is the activity coefficient of Species i. When it is an aqueous species, i is a 
molal  activity  coefficient,  while  in  the  solid  the  activity  coefficient  is  related  to  the 
concentration units we have defined, which are not mole fractions when b ≠ c. Note that 
we have written AzA , the activity coefficient of the matrix. It can vary, in the same way as 
the  activity  of  water  varies in  concentrated aqueous solutions.  AzA , can typically  be 
interpreted as corresponding to the distortion of the matrix, however it is equivalent to the 
mean activity coefficients of the solutes in the same way as in aqueous solutions.
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