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[Abstract] 

 

 

The aim of this paper is essentially to propose a common starting point for 

handling so-called solid solutions, co-precipitation processes or mixtures. This 

starting point is Thermodynamics of ideal Mixtures -non-ideality is outlined in 

Appendix-. The thermodynamic formulae are first recalled –and demonstrated in 

Appendix- for simple three component Mixtures. This gives well known formulae. 

Based on them, several features of solid solutions are discussed, as typically the 

chemical meaning of the choice for stoichiometric coefficients, dramatic decrease of 

aqueous solubility for co-precipitation of elements at trace concentrations, and 

conversely little influence on aqueous solubilities, when the components of the 

mixture are at macro concentrations. The stoichiometry of ideal solid mixtures 

equilibrated is deduced from the composition of the equilibrated aqueous solution. 

Stoichiometric coefficients inside the mixture also appeared to be the saturation 

indexes of the pure components –i.e. end-members-; which suggests graphical 

representations. No new thermodynamic parameters are needed: the solubility 

product of the pure components –or equivalently their Gibb's energy of formation- 

are enough, which simply make the equations consistent with standard state. The 

dissolution reaction of a three component mixture was handled as a two 

advancement variables reaction, one of these reaction is ionic exchange inside the 

mixture. In that respect any ionic exchange equilibrium –in solid, surface or liquid 

phases- can be interpreted as deriving from the dissolution reaction of the ion 

exchanger matrix;; this give a theoretical to Standard State for sorption, at least 

when described as Ionic Exchange. 
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[Introduction] 

Co-precipitation can considerably decrease aqueous concentrations of 

radionuclides, specially when their concentrations are less than the solubility as 

controlled by simple classical stoichiometric solid compounds –namely pure 

components also called end-members-. This can delay the migration of radioactivity 

from eventual underground waste disposals. Words Solid Solutions, Mixtures and 

Co-Precipitation are used for solid compounds of variable stoichiometries: they can 

be considered as mixed compounds (mixtures), or as one compound diluted in the 

other one (solid solutions), specially when the solute is at trace concentrations (co-

precipitation); which actually corresponds to important chemical conditions, since 

100 % purity cannot reasonably be achieved –and would correspond to infinite 

Entropy-. Intuitively impurities can exchange with analogue macro-components, 

namely ions are exchanged, when they are of same charge and analogous ionic 

radii; such elements at trace concentrations can accommodate the solid matrix -it is 

often at the origin of low temperature ideal solid solutions- to a certain limit; 

conversely, these limits are usually reached at macro-concentrations, when the 

exchanged ion cannot fit the matrix any more. Co-precipitation cannot be considered 

as mechanical trapping of trace elements, since their saturation indexes in 

equilibrium conditions are always much less than one for pure components. Co-

Precipitation and Solid Solution intuitively refer to non-symmetric situations. 

However, this is not specially needed for demonstrating the thermodynamic 

equations needed to describe mixtures [52GUG]: we will rather start by describing 

aqueous solubilities of mixtures, the symmetric situation. For describing solid 

solutions several partial or empirical approaches are proposed, and widely used, 

despite Thermodynamics of mixtures is well known, and even implemented in 

computer codes [PHREEQC, GEM-Selektor]. Karpov et al. discussed general 

mathematical equations for mixtures and their implementations in computer codes 

(see [97KAR/CHU] and reference therein) and Kulik et al. discussed empirical 

approaches and published examples [00KUL]. Direct demonstrations and interesting 

discussions were also given by Michard [83DEN/MIC, 86MIC, 89MIC and 

02MIC]. However, apparent "paradoxes" still stand, reflecting poor qualitative 

understanding for some aspects of aqueous solubility as controlled by mixtures, 

despite Theory is well established: 
• The stoichiometry inside the solid solution can very well change in the course of its dissolution, 
despite stoichiometric dissolution is sometimes assumed as a first approximation. This is often a 

correct approximation for trace concentrations, and we will see that the stoichiometry of ideal 

mixtures can be calculated from aqueous speciation. Aqueous speciation is not discussed in this 

paper [PHREEQC]. 

• Since experimental solid solutions are not necessarily ideal mixtures, empirical equations or kinetics 
are often added to thermodynamics descriptions, without clearly evidencing this is really needed. 

This is surprising since we will recall that solid solutions can induce dramatic changes in solubilities 

only for trace concentrations, where solid solutions are often ideal. 

• For introducing Ideal Mixtures in Thermochemical Data Bases, the only needed themodynamic 
parameters are the solubility products of their pure components, which actually are not new 

parameters. Consequently, one might be surprised that Themodynamics indicate solid solutions 

should always form (see [KUL] and we will confirm this), since mixtures are more stable than 

unmixed pure components (End-Members) for Entropy reasons. However, this is only for ideal 

mixtures: the paradox only means that most mixtures are not ideal for macro-concentrations at low 

temperatures (see above). 

• Different non-equivalent equations can be obtained depending on the way the stoichiometric 
coefficients –of the solid solution- are written, when ions of different charges are exchanged inside 
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the solid solution. Again these situations usually do not correspond to ideal solid solutions [89MIC]. 

Nevertheless, we will see that thermodynamic cycles can produce non-intuitive exchange equilibria 

in solid mixtures. 

We were also puzzled by the using of Mass Action Law like equations for 

equilibria with variable stoichiometric coefficients, while Mass Action Law is 

usually demonstrated by using mathematical derivation with constant stoichiometric 

coefficients, indeed we shall see a term is missing originated from deriving 

stoichiometrics coefficients, as already outlined on examples [02VIT/CAP, 

03VIT/CAP]. 

 

Objectives 

For clarifying these problems are only paradoxes that can be resolved with 

the well known thermodynamic description of mixtures, it seems enough to recall 

thermodynamic equations describing mixtures, and their associated chemical 

concepts and features; this is the aim of the present paper. In the present paper, 

we shall take a simple example: a system with 3 chemical species, the minimum 

number of species needed to form a solid solution. We give a direct simple 

demonstration in Appendix, where most of the equations and chemical reactions are 

numbered, and the same numbers are used in the main text. We then recall Working 

Formulae and finally discuss them. It will appear that the dissolution of this simple 

solid solution is actually a two advancement variable reaction, namely 

Stoichiometric Dissolution and Ionic Exchange. Intuitively the last reaction should 

involve ions of same charge and similar radii, or at least ions whose exchange fit the 

matrix. Conversely any ionic exchange equilibrium can be considered as part of the 

description of a Mixture, which can link it to usual Standard State through the 

solubility products of the pure components, providing the description of the ionic 

exchange reaction is consistent with Thermodynamics, specially it must include a 

reference state. It will appear that stoichiometric coefficients are also saturation 

indexes. 

 

Results and discussion 
Solid solution ABb(1-x)Ccx(s), includes three ions, A

zA, B
zB and C

zC, of charges zA, zB 

and zC respectively. 0 ≤ x ≤ 1, and for electronetrality 

 b = 
-zA
zB
 1 

 c = 
-zA
zC
 2 

These notations for the stoichiometric coefficients (1, b(1-x) and cx) encompass all the 

possible three components solid solutions. Other choices are possible for the stoichiometric 

coefficients, our choice will simplify equations and clarify their meaning, specially 

concerning ionic exchanges (see below). The dissolution reaction is usually written 

 ABb(1-x)Ccx(s) → AzA + b(1-x) BzB + c x CzC 4 

but we rather writes 

 A
zA  + b(1-x) B

zB  + c x C
zC  → AzA + b(1-x) BzB + c x CzC 7 
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where A
zA  is ion A

zA in the solid solution. zA is the charge of ion A
zA, similar notations are 

used for B and C which are generic elements (not Carbone and Boron respectively) Further 

reactions in the aqueous phase can be modelled independently by using mass balance and 

mass action laws, for this reason and for simplicity, we do not consider them. Since we 

choose 1 for the stoichiometric coefficient of A
zA, Dissolution Reaction 7 also includes 

Ionic Exchange Equilibrium 

 c C
zC  + b B

zB → b BzB  + c CzC 6 

The set of two equations 

 



Ks01-x Ks1x = 

mA mB
b(1-x)
 mC

cx

(1-x)
b(1-x)
 x
cx

Ks1
Ks0
 = 
mC

c

mB
b

(1-x)
b

x
c

 52 

is easily demonstrated for ideal solid solutions, where mA is the aqueous concentration of 

ion A
zA, and similar notations are used for B and C. Both equations are well known; but 

usually cited separately in literature, hence it is not well recognized that they must be 

solved simultaneously. 

 Ks0 = mA mB
b
 24 

 Ks1 = mA mC
c
 24a 

are the solubility products of the end-members corresponding to Equilibria 

 ABb(s) → AzA + b BzB 20 

 ACc(s) → AzA + c CzC 21 

where ABb(s) and ACc(s) are the end-members corresponding to x = 0 and 1 respectively, 

while when the solid solution is stable 0 < x < 1, which means no end-member can be stable 

(when the solid solution is stable). Since aqueous concentrations are often easily measured, 

it is useful rearranging the above equations for extracting x, the stoichiometric coefficient 

in the solid phase: 

 1 – x = 
mA

1/b
 mB

Ks0
1/b  59 

 x = 
mA

1/c
 mC

Ks1
1/c  68 

Ks0 b
b
 and Ks1 c

c
 can now be interpreted as the constants of ionic exchange Equilibria 

 A
zA  + b B

zB  → AzA + b BzB 54 

and A
zA  + c C

zC  → AzA + c CzC 60 

respectively. However, such ionic exchanges are of little chemical interest, since they 

involve ions of opposite charges: such mathematical results probably do not correspond to 

ideal solid solutions. Introducing Notations mA,0/1, mB,0/1 and mC,0/1 for the concentrations of 

A
zA, B

zB and C
zC respectively, when both end-members control the aqueous solubility (in 

that case not any solid solution is formed), the above equations for solid solutions write 

 




mA
mA,0/1



mB

mB,0/1

b(1-x)

 




mC

mC,0/1

cx

 = x
cx
 (1-x)

b(1-x)





mC

mC,0/1

c

 




mB,0/1

mB

b

 = 
x
c

(1-x)
b

 74 

where mA,0/1 = Ks0 mB,0/1
-b
 = Ks1 mC,0/1

-c
 73 

For slope analysis of Solubility  
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





∂lg(mB)

∂lg(mA)
mC

 = 
-1

c(1-x)
+
1

c
-
1

b
 76 

 






∂lg(mC)

∂lg(mA)
mB

 = 
-1

bx
+
1

b
-
1

c
 76a 

it appears that when b = c (i.e. when zB = zC) these slopes are obtained from stoichiometric 

coefficients of the non-stoichiometric dissolution reaction (Eq.4), in the same way as for 

stoichiometric compounds (i.e. generalising slope analysis of End-members). 

A general formula for three component solid solutions is AνABνBCνC(s); but the 

same solid solutions can as well be noted ABνB/νACνC/νA(s) for any constant value of νA, and 
the stoichiometric coefficients are also constrained by electroneutrality (Eq.1 and 2): for 

these reasons ABb(1-x)Ccx(s) notation encompass all possible three component solid 

solutions. x is the proportion of the end-members in the solid solution 

 ABb(1-x)Ccx(s) = x ABb(s) + (1-x) ACc(s) 3 

and exchanging ions B
zB and C

zC (Eq.6) appears to be a "natural" way to vary the 

stoichiometry within the solid solution. When A, B and C are molecules –i.e. not 

necessarily elements, but groups of elements- several choices are possible for dividing any 

real solid solution in such three groups of elements. Chemists "natural" choices of A, B, C 

and x should typically ensure that "natural" End-Members ABb(s) and ACx(s), are of same 

structure, and Exchanged Ions B
zB and C

zC, of same charge (zB = zC, hence b = c (Eq.1 and 

2)) and similar ionic radii for having more chances of eventually evidencing any ideal solid 

solution. These choices of A, B, C and x -not provided by Thermodynamics- are important 

for chemical interpretations; which explains paradoxes as outlined in Introduction. At least 

one ionic exchange equilibrium is intrinsically associated with any Mixture: typically 

Equilibrium 7 -with variable x- includes ionic Exchange Equilibrium 6, and it is better 

choosing notations consistent with realistic chemical ionic exchanges. Conversely, linear 

combinations of these two equilibria provide other equilibria as typically 

 A
zA  + b B

zB  → AzA + b BzB 54 

 A
zA  + c C

zC  → AzA + c CzC 60 

which appear to be other exchange equilibria; but they cannot have the same meaning as the 

"natural" exchange of Ions B
zB and C

zC (Eq.6), at least because zB and zC are of same sign, 

while zA is not. This again stresses the importance of the meaning of the notations –namely 

here choosing νA = 1, while νB and νC vary with x-, and of the chemical interpretations of 
equations, namely when ABb(s) and ACc(s) are "natural" End-Members –as defined just 

above for Ionic Exchange Equilibrium 6-, it does not seem possible to simply and 

simultaneously define equivalent "natural" End-Members for Equilibria 54 or 60. A set of 

two equations should be solved together (Eq.52). To our knowledge, this is not always 

recognized, despite each formula is already well known separately (see typically [02MIC] 

where direct demonstrations are proposed). Eq.52 are the thermodynamic description of the 

ideal solid solution (for non-ideality, see Apendix). In the first equation 52 term 

mA mB
b(1-x)

 mC
cx
 looks like a solubility product for Equilibrium 7; however, it is not 

constant; while the second equation 52 is Mass Action Law for the ionic exchange 

equilibrium (Eq.6). The stoichiometric coefficients in the solid solution can be 

calculated from the aqueous speciation: Eq.59 or equivalently Eq.68 obtained by 

combining Eq.52, despite it is seldom recognized that x can be calculated for ideal solid 

solutions. Coefficients (1-x)
b
 and x

c
, appear to be saturation indexes for End-members 

ABb(s) and ACc(s) respectively (Eq.59 and 68). This suggests plots –rather log-log plot- of 

the saturation indexes as a function of the concentration of the non-exchanged ion, namely 
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A
zA. 0 ≤ x ≤ 1 correspond to 0 < x < 1 when the solid solution is not degenerated into one of 
its end-members. In that case, the saturation indexes of the end-members are always less 

than 1 when assuming ideal solid solutions. This also means that no end-member is 

stable. When x is close to zero, the saturation indexes of ABb and ACc are close to 1 and 

very small respectively (Eq.59 and 68): trace concentrations of C
zC are co-precipitated in 

End-member ABb. Conversely, when x is close to 1, trace concentrations of B
zB are co-

precipitated in End-member ACc. In these cases of trace concentrations, it often makes 

sense to assume that the solid solution is ideal, while this should be quite exceptional at low 

temperature in the other cases, where none of the saturation indexes is very small, which 

then, anyhow, means that Solid Solutions should not dramatically decrease Solubility. Eq.74 

again indicates that dramatic changes are expected for ratii mB/mB,0/1 and mC/mC,0/1, only 

when x is close to 0 or 1. Ionic Exchange Equilibrium 6 can be obtained by mathematical 

deriving: 

 νi,6 = 
dνi
dx
 8 

where νi and νi,6 are the stoichiometric coefficients of Reactions 7 and 6 respectively. This 
is actually the way we introduced Ionic Exchange Equilibrium 6 included in Dissolution 

Reaction 7. This suggests Notation 

 Reaction 6 = 
d(Reaction 7)

dx
 9 

For this reason we obtained several pairs of equations, where the second one –

corresponding to Ionic Exchange Equilibrium 6- can be obtained by deriving the first one –

corresponding to Dissolution Reaction 7-. Conversely any ionic exchanged equilibrium 

can be considered as deriving from a mixture: Ionic Exchange Equations are integrated 

for obtaining the equations for the matrix, from which the ionic exchange is assumed to 

derive. The equilibrium constant of the ionic exchange is interpreted as a ratio of 

equilibrium constants for the pure components (second Eq.52), a second constant is needed 

for characterising both pure components, it is provided by the integration constant. 

Equilibrium constants for the pure component are equivalent to Gibbs energies of reactions, 

and finally to Gibb's Energies of formation by using auxiliary data. This outlines the link 

with the usual Standard State. Many ionic exchange equilibria have been evidenced in 

typically liquid, solid or surface phases. Integrating them make a link to their matrix, and 

finally to Standard State. However when the "matrix" is actually a surface, it is not clear 

whether surface solubility products can be measured. It is also required to define an ideal 

matrix, before eventually adding non-ideality (see Appendix), for surfaces this is usually not 

a problem for Ionic Exchange Theories, when the interface phase is neutral –it is implicitly 

assumed to include the electric double layers- while it is less clear for Surface 

Complexation Formulae. 

 

Appendix and References can be asked to the first author, and will be in a 

separate report, the full version will be referenced at URL http://www-ist.cea.fr. 


