

Pyrite (FeS₂) oxidation as a function of pH: a multitechnique approach

M. DESCOSTES^{1,2}, C. BEAUCAIRE¹ and P. VITORGE^{1,2}

¹Laboratory of Radionuclides Migration Measurements and Modelling (France)

²UMR 8587 CEA – Evry University – CNRS (France)

Nuclear Energy Division/ Department of Physics and Chemistry Service for the Studies of the Radionuclides Behaviour

Goldschmidt Conference 2006

1

FeS₂ oxidation mechanism not well established

$FeS_2 + 7/2 O_2 + H_2O = Fe^{2+} + 2 SO_4^{2-} + 2 H^+$

FeS₂ oxidation in contact with air is so fast that many studies dealt with an initially oxidized solid;

both solid and aqueous oxidation products [f=(pH)]

production of several intermediate S_xO_y^{z-} species since 7 e⁻ are transferred while any elementary redox reaction is limited to a maximum of 2 e⁻ net transfer.

$$\begin{split} FeS_2 &\rightarrow S_2^{2-} \rightarrow S_3^{2-} \rightarrow S_4^{2-} \rightarrow S_5^{2-} \rightarrow S_0^{0} \rightarrow \underbrace{S_2O_3^{2-}}_{S_5O_6^{2-}} \rightarrow S_4O_6^{2-} \rightarrow S_2O_4^{2-} \rightarrow S_3O_6^{2-} \rightarrow S_2O_6^{2-} \rightarrow S_$$

Nuclear Energy Division/ Department of Physics and Chemistry Service for the Studies of the Radionuclides Behaviour

Objectives and scientific approach

- This work intents to identify the FeS₂ oxidation mechanism by O₂ (20%) as a function of pH
 - $pH = 1.5 3 (HClO_4/HCl) \qquad pH = 5 10.5 (HClO_4/NaHCO_3)$ short time experiments: 6 hours
- to evaluate the effects of HCO₃⁻ during its dissolution (10⁻³ 1 mol.L⁻¹) long time experiments: 30 d
- > to study both aqueous and solid oxidation products
 - S speciation (IC+CE+potentiometry), [Fe^{III}], [Fe]_{tot} (spectrophotometry +*FAAS*), pH, Eh, $\Sigma[H_2S]$ (potentiometry);
 - Chemical and redox environments (*XPS*), oxidation products distribution (*nuclear microprobe*), morphology (*SEM*) and nature (*FTIR*) on FeS_2 surface.

Solid preparation : in glovebox (P_{O2} and $P_{H2O} < 1$ ppm) W/R : 150 mL.g⁻¹

Nuclear Energy Division/ Department of Physics and Chemistry Service for the Studies of the Radionuclides Behaviour

Nuclear Energy Division/ Department of Physics and Chemistry Service for the Studies of the Radionuclides Behaviour

Results in acidic media (short time experiments)

Nuclear Energy Division/ Department of Physics and Chemistry Service for the Studies of the Radionuclides Behaviour

Service for the Studies of the Radionuclides Behaviour

Results in neutral – carbonated media (long term experiments)

$$FeS_{2} \xrightarrow{K_{1}} S_{2}O_{3}^{2} \xrightarrow{K_{2}} SO_{4}^{2}$$

$$C_{FeS2} = C_{FeS2}^{\circ} e^{-K_{1}}$$

$$C_{B} = 2[S_{2}O_{3}^{2}] \qquad C_{B} = c_{B}^{\circ} e^{-K_{2}^{\circ}} + \frac{K_{1}}{K_{2} - K_{1}} C_{FeS2}^{\circ} (e^{-K_{1}} - e^{-K_{2}})$$

$$C_{B} = c_{B}^{\circ} e^{-K_{2}^{\circ}} + c_{B}^{\circ} (1 - e^{-K_{2}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (e^{-K_{1}} - e^{-K_{2}})$$

$$C_{B} = c_{B}^{\circ} e^{-K_{2}^{\circ}} + c_{B}^{\circ} (1 - e^{-K_{2}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} (1 - e^{-K_{1}}) C_{FeS2}^{\circ} (1 - e^{-K_{1}}) + c_{FeS2}^{\circ} ($$