

36^{èmes} Journées des Actinides

Oxford (U.K.) – April 1st-4th, 2006

Synthesis of Solid Alkaline Lanthanide Carbonates (AlkLn(CO₃)₂)*

<u>Violaine Philippini</u>⁽¹⁾⁽²⁾, P. Vitorge⁽¹⁾⁽²⁾, T. Vercouter⁽¹⁾ and A. Chausse⁽²⁾ S. Bosonnet⁽³⁾, A. Cheniere⁽⁴⁾, C. Desgranges⁽³⁾, M. Tabarant⁽⁴⁾

- (1) CEA Saclay (France) Laboratory for the Speciation of Radionuclides and Molecules
- (2) UMR8587 [University of Evry CEA CNRS] (France)
- (3) CEA Saclay (France) Laboratory of Non Aqueous Corrosion Studies
- (4) CEA Saclay (France) Laboratory of Surfaces and Interfaces Reactivity

* This work is part of V. Philippini's PhD thesis

UMR 8587 Knowing the stoichiometry of the limiting complex

[92VIT] P. Vitorge, Radiochimica Acta, 1992, 58-59, 105-107. Simplified predominance diagram for M(III) in carbonate medium T=25°C: P=1.013bar: $a_{A} = 10^{-4} a_{U} = 1$: $a_{A} = a_{U} = 10^{0.4771}$ 12 11 hydroxide complexes 10 10-3.5 atm 9 Hd 8 carbonate free complexes ioh Placarbonate <u>complexes</u> _5 _1 2 -2 -1 0 $\log a CO_2^{2-}$ most common 4 different experimental species

complex aqueous speciation

conditions

→ Stability and mobility of An species in groundwater may govern their long time behaviour

➔ Potential radioactive waste repository : Callovo-Oxfordian geological formation; anoxic conditions

- Pu(III), Am(III), Cm(III)
- aqueous speciation dominated by carbonate complexes

→ Thorough review of the thermochemical data ⇒ limiting carbonate complex of An(III) still discussed

➔ Knowing aqueous speciation to determine stability constants

UMR 8587 Goal of this study

[05VER/VIT] T. Vercouter *et al.*, New Journal of Chemistry, 2005, 29, 544-553 [66FAU/FRO] J. Faucherre *et al.*, Revue de chimie Minérale, 1966, 3, 953-991 T=25°C; P=1.013bar; a _{Am}=10⁻⁴ a_{H2O}=1; a_{Nat}=a_{CIO4}=10^{0.4771}

→ AlkLn(CO₃)₂ (s): the stable phase in equilibrium with the limiting complex of Am(III) (and their chemical lanthanide analogues) \Rightarrow Am(CO₃)₃³⁻

→ Using the same methodology, different limiting complex

- Ln radii
- Interactions between Ln and counter-ion

AlkLn(CO₃)₂ preparation \Rightarrow solubility measurements; LC, K

Nuclear Energy Division/ Department of Physics and Chemistry Service for the Studies of the Radionuclides Behaviour

Synthesis of Solid Alkaline Lanthanide Carbonates

Nuclear Energy Division/ Department of Physics and Chemistry Service for the Studies of the Radionuclides Behaviour

V. Philippini 4 / 13

UMR Experimental synthesis of AlkLn(CO₃)₂

- → Solid compounds are precipitated at room temperature and atmospheric pressure
 - Conditions close to those used for solubility measurements
 - Only solid syntheses will be presented
 - → After an equilibration period: a fraction is filtered, washed, air-dried over a night:
 - characterised by XRD
 - [Alk] and [Ln] by ICP-AES
 - H₂O and CO₃²⁻ thermogravimetric analysis

CO ₃ ²⁻ HCO ₃ ⁻	Li+	Na+	K+	Cs+	NH4+
La ³⁺	no	yes	no	no	no
Nd ³⁺	yes	yes	yes	yes	yes
Eu ³⁺	yes	yes	no	no	yes
Dy ³⁺		yes	no	no	

[00RUN/PEL] W. Runde *et al.,* Journal of Alloys and Compounds 2000, 303-304, 182-190 [74NAG/WAK] A. Mochizuki *et al.* Bulletin of the Chemical Society of Japan 1974, 47(3), 755-756

Nuclear Energy Division/ Department of Physics and Chemistry Service for the Studies of the Radionuclides Behaviour

Synthesis of Solid Alkaline Lanthanide Carbonates

UMR AlkLn(CO_3)₂,xH₂O thermal decomposition

 \Rightarrow thermal decomposition studied by TG at 6°C/min under flowing nitrogen

Nuclear Energy Division/ Department of Physics and Chemistry Service for the Studies of the Radionuclides Behaviour

Synthesis of Solid Alkaline Lanthanide Carbonates

April 2nd 2006 V. Philippini

UMR NaEu(CO_3)₂, xH₂O thermal decomposition

(C)

→NaNd(CO₃)₂, NaDy(CO₃)₂, LiEu(CO₃)₂ behaviours are the same as NaEu(CO₃)₂ one

→ temperatures of the steps differ slightly for the different carbonates

Nuclear Energy Division/ Department of Physics and Chemistry Service for the Studies of the Radionuclides Behaviour

Synthesis of Solid Alkaline Lanthanide Carbonates

UMR NaEu(CO_3)₂, xH₂O thermal decomposition

Nuclear Energy Division/ Department of Physics and Chemistry Service for the Studies of the Radionuclides Behaviour

10 / 13

$\begin{array}{l} \text{UMR} \\ 8587 \end{array} \quad \text{AlkLn}(\text{CO}_3)_2, \text{xH}_2\text{O composition} \end{array}$

		ICP-AES	Thermog ana	Thermogravimetric analysis	
		$\frac{[Alc]}{[Ln]}$	nCO ₃ ²⁻	nH ₂ O	
	LiNd(CO ₃) ₂		Not analysed		
	LiEu(CO ₃) ₂	1.04±0.04	1.7±0.2	2.5±0.2	
	NaLa(CO ₃) ₂		Not analyse	Not analysed	
	NaNd(CO ₃) ₂	0.99±0.04	1.9±0.2	2.4±0.2	
	NaEu(CO ₃) ₂	1.07±0.07	1.9±0.2	2.7±0.2	
	NaDy(CO ₃) ₂	1.00±0.04	1.8±0.2	2.2±0.2	
	KNd(CO ₃) ₂		Not analysed		
	CsNd(CO ₃) ₂	1.00±0.06	TG curve not examined		
	NH ₄ Nd(CO ₃) 2	Not analysed	TG curve not examined		
	NH ₄ Eu(CO ₃) ₂		TG curve not examined		
ECR					

➔ A few solids are not analysed yet

- LiNd(CO₃)₂
- ➢ NaLa(CO₃)₂
- $\succ KNd(CO_3)_2$

→ NH₄ can not be quantified by ICP-AES, since the matrix is HNO₃

→ CsNd(CO₃)₂ TG curve is too different from the others to be analysed

→ for $NH_4Nd(CO_3)_2$ and $NH_4Nd(CO_3)_2 H_2O$, NH_3 and CO_2 are lost simultaneously \Rightarrow TG curves are not analysed

UMR 8587 Conclusion and future works

Conclusions

> Numerous published data on syntheses

> empirical

slight differences in AlkLn(CO₃)₂ syntheses

→ Solid compounds are precipitated at room temperature and atmospheric pressure ⇒ mixture with other minor phases, two pure solids

→ Characterisation by XRD, optic spectrometry and thermogravimetry

Future works

➔ Solubility measurements on sodium lanthanide carbonates (in progress)

→ Solubility measurements on alkaline neodymium carbonates \Rightarrow the first pure phase NaNd(CO₃)₂

- ➔ Partition measurements with radioactive tracers
- → Same study with Th(IV)

I would like to acknowledge:

Sophie Bosonnet, Alex Cheniere, Clara Desgranges and Michel Tabarant for experimental help and fruitful scientific discussions

- CEA for financial support
- The scientific committee

UMR **XRD powder patterns**

SEC

8587

Nuclear Energy Division/ Department of Physics and Chemistry Service for the Studies of the Radionuclides Behaviour

Synthesis of Solid Alkaline Lanthanide Carbonates

April 2nd 2006 V. Philippini

14/13

Service for the Studies of the Radionuclides Behaviour

Synthesis of Solid Alkaline Lanthanide Carbonates

V. Philippini 15 / 13

UMR 8587

Nuclear Energy Division/ Department of Physics and Chemistry Service for the Studies of the Radionuclides Behaviour

Synthesis of Solid Alkaline Lanthanide Carbonates

April 2nd 2006 V. Philippini

^{16 / 13}

