#### **Theoretical Studies of Actinide Complexes in Aqueous Solution**

B. Siboulet, <sup>a</sup> <u>C. J. Marsden</u> <sup>b</sup> and P. Vitorge <sup>c</sup>

<sup>a</sup> CEA Marcoule

- <sup>b</sup> LCPQ Toulouse
  - <sup>c</sup> CEA Saclay



## Presentation outline

- Context and Systems
- Theoretical Methods, Justification and Calibration
- Results



## Context and Systems

UO<sub>2</sub><sup>2+</sup>aq

Pa(V)<sub>aq</sub>

 $PaO_{2^{+}aq}^{+}$ ,  $PaOOH^{2+}_{aq}$ ,  $PaOOH(OH)^{+}_{aq}$ ,  $PaF_{7}^{2-}$ 

 $[UO_2F_n(H_2O)_{5-n}]^{(2-n)+}_{aq}$ 



# **Explicit Solvation Models**

- Uranyl solvation by explicit models
- Uranyl fluoride complexation
- Protactinium structure in (non-)complexing medium





### Why an explicit model for solvent?

- Solvated uranyl structure is known
- Raman and IR frequencies are known
  - Solvated uranyl (Nguyen, Inorg.Chem,1992)
  - Solvated uranyl fluoride complexes (ibid)
- The frequency shift between those two is strongly overestimated by 1-sphere models
- The influence of the solvent is underestimated with PCM models



### Structural determination (2 spheres)

- For uranyl aquo, distance accuracy vs experiment
  - Distance in equatorial plane : 1 pm (0.5%)
  - Axial Distance : 2 pm (1%)
- For Uranyl/1 Fluoride (equatorial) bond
  - Distance consistent with experiment (Gaillard C. Inorg Chem 2004)
  - Distance varies 10 pm within kT (F/H bonds)



## **Theoretical Methods**

#### DFT (B3LYP)

quasi-relativistic pseudo-potentials for the actinides
"(very) small core" 60 electrons for <sub>92</sub>U
1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f
32 "valence" electrons 5s, 5p, 5d, 5f, 6s, 6p, 6d, 7s



# Justification and Calibration

Advantages of DFT:

- computational efficiency
- quality of the results
- interpretation of "wavefunction"



| UO <sub>2</sub> <sup>2+</sup> | r/Å   | ω <sub>1</sub> /cm <sup>-1</sup> | ω <sub>3</sub> /cm <sup>-1</sup> |
|-------------------------------|-------|----------------------------------|----------------------------------|
| RHF                           | 1.654 | 1221                             | 1301                             |
| MP2                           | 1.738 | 910                              | 1020 !                           |
| MP2 (g/U)                     | 1.720 | 946                              | 1060                             |
| B3LYP                         | 1.705 | 1041                             | 1140                             |
| 4-comp CCSD                   | 1.696 | 1040                             | 1168                             |
| 4-comp CCSD(T)                | 1.715 | 974                              | 1121                             |



|                                  |                           | Ne matrix              | <b>B3LYP</b>           |
|----------------------------------|---------------------------|------------------------|------------------------|
| $\omega_3/cm^{-1}$               | $UO_2^+$                  | 980                    | 1010                   |
|                                  | UO <sub>2</sub>           | 915                    | 931                    |
|                                  | UO <sub>2</sub> -         | 857                    | 874                    |
|                                  |                           |                        |                        |
| [UO <sub>2</sub> (H <sub>2</sub> | <b>O</b> )] <sup>2+</sup> | r(U-O <sub>w</sub> )/Å | D/kJ.mol <sup>-1</sup> |
| B3                               | LYP                       | 2.328                  | 292                    |
| CC                               | CSD(T)                    | 2.337                  | 289                    |



# Literature (1/2)

Spencer, Gagliardi, Handy *et al* Hay, Martin and Schreckenbach Tsushima and Suzuki Hemmingsen, Amara, Ansorborlo and Field Vallet, Wahlgren, Schimmelpfennig *et al* Fuchs, Shor and Rösch Clavaguéra, Brenner, Hoyau et al Cao and Balasubramanian Shamov and Schreckenbach

JPCA, 103 (1999) 1831 JPCA, **104** (2000) 6259 JMS Theochem, **529** (2000) 21 JPCA, 104 (2000) 4095 JACS, **123** (2001) 11999 IJQC, **86** (2002) 487 JPCB, **107** (2003) 3051 JCP, **123** (2005) 114309 JPCA, 109 (2005) 10961



# Literature (2/2)

Bühl, Diss and Wipff

Hagberg, Karlström, Roos and Gagliardi

Vallet, Wahlgren, Schimmelpfennig *et al* Infante and Visscher Gaillard, El Azzi, Billard *et al*  JACS, **127** (2005) 13506 JACS, **127** (2005) 14250

IC, **40** (2001) 3516 JCC, **25** (2004) 386 IC, **44** (2005) 852





| expt                             | 1.766 (1) | 2.420(1) | 870  |
|----------------------------------|-----------|----------|------|
| <b>B3LYP</b>                     |           |          |      |
| UO <sub>2</sub> <sup>2+</sup>    | 1.705     |          | 1041 |
| $[UO_2(H_2O)_4]^{2+}$            | 1.749     | 2.437    | 953  |
| $[UO_2(H_2O)_5]^{2+}$            | 1.752     | 2.502    | 945  |
| $[UO_2(H_2O)_5]^{2+}/PCM$        | 1.765     | 2.440    | 917  |
| $[UO_2(H_2O)_5(H_2O)_{10}]^{2+}$ | 1.771     | 2.443    | 902  |

r(U=O)/Å r(U-O<sub>w</sub>)/Å  $v_1(U=O)/cm^{-1}$ 

UO<sub>2</sub><sup>2+</sup>aq







| expt                             | 1.766 (1)                  | 2.420 (1) | 870  |
|----------------------------------|----------------------------|-----------|------|
| <b>B3LYP</b>                     |                            |           |      |
| UO <sub>2</sub> <sup>2+</sup>    | 1.705                      |           | 1041 |
| $[UO_2(H_2O)_4]^{2+}$            | 1.749                      | 2.437     | 953  |
| $[UO_2(H_2O)_5]^{2+}$            | 1.752                      | 2.502     | 945  |
| $[UO_2(H_2O)_5]^{2+}/PCM$        | 1.765                      | 2.440     | 917  |
| $[UO_2(H_2O)_5(H_2O)_{10}]^{2+}$ | 1.771                      | 2.443     | 902  |
| $[UO_2(H_2O)_5(H_2O)_{10}^2ap]$  | <sup>2+</sup> <b>1.785</b> | 2.420     | 875  |

 $UO_2^{2+}$ aq

r(U=O)/Å  $r(U-O_w)/Å$   $v_1(U=O)/cm^{-1}$ 













# Charge transfer to uranyl

#### "Natural" charges, B3LYP (e)

|                                      | U     | 0      |
|--------------------------------------|-------|--------|
| UO <sub>2</sub> <sup>2+</sup>        | 3.302 | -0.651 |
| $[UO_2(H_2O)_4]^{2+}$                | 3.100 | -0.782 |
| $[UO_2(H_2O)_5]^{2+}$                | 3.103 | -0.805 |
| $[UO_2(H_2O)_5(H_2O)_{10}]^{2+}$     | 3.088 | -0.868 |
| $[UO_2(H_2O)_5(H_2O)_{10} 2ap]^{2+}$ | 3.112 | -0.916 |





# Uranyl in heavy water

 $UO_2^{2+}/D_2O$  cf  $UO_2^{2+}/H_2O$ : IR-active stretching mode  $v_3$  lowered by 9.5 cm<sup>-1</sup> B3LYP calc for  $[UO_2(D_2O)_4]^{2+}$  $\Delta v - 1.2 \text{ cm}^{-1}$ 

B3LYP calc for  $[UO_2(D_2O)_4(D_2O)_8]^{2+}$  $\Delta v - 8.4 \text{ cm}^{-1}$ 



Conclusion: 2nd hydration sphere really is important!

# Nature of Pa(V) in aq soln

 $PaO_2^+$  is an actinyl ion, like  $UO_2^{2+}$ ,  $PuO_2^{2+}$ , etc It is "well-known" that these are inert. But Pa(V) in aq soln exists as a 2+ species. What could this be? Can  $PaO_2^+$  be protonated in aq solution?  $PaO_2^+$  and  $UO_2^{2+}$  are (valence) iso-electronic with  $CO_2$ . Is  $CO_2$  basic?



Protactinium in aqueous acid non-complexing solvent

- Many experimental difficulties
  - Sorption on surfaces
  - Multimers
  - Radiations
- Need for a theoretical approach
  - Based on experimental data :
  - Stoechiometry: PaOOH<sup>+2</sup> or PaOOH(OH)<sup>+1</sup>



#### Natural charges

 $\begin{array}{cccc} 1.08 & 2.97 & 3.30 \\ O = C = O & [O = Pa = O]^{+} & [O = U = O]^{2+} \\ -0.54 & -0.98 & -0.65 & -0.65 & \\ CO_{2} + H^{+} & \rightarrow OCOH^{+} & \Delta E = -563 \text{ kJ/mol} \\ PaO_{2}^{+} + H^{+} & \rightarrow [OPaOH]^{2+} & \Delta E = -282 \\ UO_{2}^{2+} + H^{+} & \rightarrow [OUOH]^{3+} & \Delta E = +470 \end{array}$ 



# $PaO_2^{+1}$

- $AnO_2^{+1}$  U, Np, Pu, Am
- PaO<sub>2</sub><sup>+1</sup> has a linear structure in calculations (DHF, B3LYP)
- PaO<sub>2</sub><sup>+1</sup> very negative charge on O (NPA)
  - -1.195 electron, more than :



• -0.968 water monomer



# PaOOH<sup>+2</sup>: a linear structure similar to uranyl





- A linear structure :  $\Delta E$  SCF= 64 kJ/mol
- High electronic similarity with uranyl
  - Charge
  - Bond orders
  - Same equatorial coordination: 5
  - Apical links stronger than for uranyl



# Hydrated PaOOH<sup>+2</sup>

- Strong (i.e. short) apical links
- Molecular ion
  - PaOOH<sup>+2</sup> better than
  - PaO(OH)+2
- Equatorial Pa-O distances = 248 pm
- Pa=O = 188 pm





# PaO<sub>2</sub><sup>+1</sup> vs PaOOH<sup>+2</sup>

- $PaO_2^{+1} + H^+ \rightarrow PaOOH^{+2}$
- In vacuum,  $\Delta E SCF = -282 \text{ kJ}$
- In water  $\Delta G_r$ 
  - 2-sphere model
  - Apical links
  - PCM
  - Including H<sup>+</sup> solvation



• -25 kJ (approximate)

# $PaO_2^{+1}$ vs $PaOOH(OH)^{1+}$

- $PaO_2^{+1} \rightarrow PaOOH(OH)^{+1}$ 
  - « Isomers »
- $\Delta G_r = -15$  ? kJ/mol
- PaO<sub>2</sub><sup>+1</sup> is a few orders of magnitude below PaOOH(OH)<sup>+1</sup> in any water solution





# Hydrolysis of PaOOH<sup>+2</sup>

- $PaOOH^{+2} + H_2O \rightarrow PaOOH(OH)^{+1} + H^+$
- $\Delta G_r = -10$  ? kJ/mol
- lgK~-2 ?/5
- Experiment lgK=-1.24 (Trubert 2002, J.Sol.Chem)



# Structural analysis as a complementary tool for speciation

- Speciation depends on  $\Delta G$  : can not be evaluated precisely
- Structure comparison experimental/theoretical can be more efficient e.g.
  - Distance precision 1% on experiment and theory
- Distance P=O = 172 pm EXAFS sulfate complex (Le Naour et al., Inorg. Chem. 2005)
  - In PaOOH<sup>+2</sup> ~190 Not consistent



 In PaO<sup>3+</sup> ~ 175 Consistent with the "one oxo bond" conclusion (ibid)

# Structural analysis as a complementary tool for speciation



- In hydrofluoric acid media, distance Paligands is 216 pm (ibid)
- Not consistent with the first structure (224 pm)
- PaF<sub>7</sub><sup>2-</sup> is the only consistent structure



# Apical links on uranyl complexes ? Analysis of Raman frequencies





# Consistency along the UO<sub>2</sub><sup>2+</sup>/n F<sup>-</sup> series for Raman frequency



Apical links are required or excluded along all the series.



# Preliminary result

# $[UO_{2}(H_{2}O)_{4}(OH)]^{+}$ Raman frequency <u>shift</u> cf $UO_{2}^{2+}/aq$ obs -21.5 1 cm<sup>-1</sup> calc - 21.1 cm<sup>-1</sup> (2-sphere model)

Further results needed in this series! Other ligands must be studied ...

