

HYDRATION STRUCTURE AND DYNAMICS OF LANTHANIDES BY MOLECUL DYNAMICS SIMULATIONS WITH A POLARIZABLE FORCE FIELD

Magali DUVAIL, Pierre VITORGE and Riccardo SPEZIA

Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement UMR 8587 CNRS, Université d'Evry Val D'Essonne, France

FORCE FIELD DEVELOPEMENT

rspezia@univ-evry.fr www.lambe.univ-evry.fr/rspezia

$$V_{tot} = V_{elec} + V_{O-O}^{LJ} + V_{La-O}^{Buck6} \longrightarrow V_{ij}^{Buck6} = A_{ij}^{Buck6} \exp(-B_{ij}^{Buck6} r_{ij}) - \frac{C_{6,ij}^{Buck6}}{r_{ij}^6}$$
$$V_{elec} = \frac{1}{2} \sum_{i,j} \left[\frac{q_i q_j}{r_{ij}} + \frac{1}{r_{ij}^3} (-q_i \mathbf{p}_i + q_j \mathbf{p}_j) \cdot \mathbf{r}_{ij} + \mathbf{p}_i \cdot \overline{\overline{\mathbf{T}}}_{ij} \cdot \mathbf{p}_j \right] + \frac{1}{2} \sum_i \mathbf{p}_i \cdot (\overline{\alpha}_i)^{-1} \cdot \mathbf{p}_i$$

We have used an alternative way of resolving the self-consistent equation by using a Car-Parrinello type of dynamics of additional degrees of freedom associated with induced dipoles. This approach allows us to reduce the CPU time by a factor of 13 as compared to the SCF resolution. Thus the CPU time comes back to about the same as for unpolarizable systems. We were able to perform 3 ns MD simulations of all the cations in bulk water.

Buckingham parameters were obtained by fitting MP2 calculations on a symmetric $La(H_2O)_8^{3+}$

Duvail et al., J.Chem.Phys. 127, 034503 (2007); Chem.Phys.Lett. 448, 41 (2007).

EXTENDING POTENTIAL TO THE WHOLE SERIES

Parameters were changed along the series following the modification in atomic polarizability and ionic radius of Lanthanides, keeping A_{ii} constant and calculating new B_{ii} and C_{ii} terms. This did not require ab initio calculations for each atom but only the access to atomic properties.

Duvail et al., J.Chem.Phys. 130, 104501 (2009).

Exchange frequency La Ce Pr NdPmSmEu Gd Tb Dy Ho Er Tm Yb Lu **Dynamical model** [Ln(H₂O)₉]³ [Ln(H₂O)₈- - -(H₂O)]³⁺ b) = e3Eu³⁺ $[Ln(H_2O)_8]^{3+} + H_2O$ c) 60Tm³¹

k (Å⁻¹)

R (Å)

EXAFS data provided by P.D'Angelo (Rome)

Duvail et al., ChemPhysChem 9, 693 (2008)