

The Use of Models

1

- predicting the migration of radionuclides in groundwaters.

Context:

- disposal of radioactive wastes in stable (deep, anoxic) geological site
 - Equilibrium conditions
 - o predictions based on modelling and **well established** scientific bases

macroscopic modelling based on thermodynamics

- ideal aqueous solutions: Thermochemical data (OECD-NEA-TDB)
 - Thermochemical data reflect chemical reactivity: **molecular modelling** •

- Equilibrium constants

 -as typically used for aqueous solution chemistryis a convenient -rigorous- way to treat chemical equilibria and corresponding energies of reaction.
- This approach -namely law of mass action- can be used for solid-solutions (mixtures, co-precipitation... ion exchanges, sorption)

o back to thermodynamic bases of the law of mass action.

- •Conversely, any ion exchange equilibrium -any chemical equilibriumcan be interpreted as deriving from a mixture.
- •The solubility products of the end-members are the link to the reference state (this might be a problem for surface complexation formula), and **no extra thermochemical data is needed**.
- •This add the formation reaction of the matrix -or solvent- to the ion exchange reaction -or chemical reaction of the solute.
- •The matrix can be any phase: liquid, solid, surface.

Non-ideality:

Quimica (2004) Mérida, Yucatán (Mexico) P.Vitorge et al. Actualité Chim. (2005), 285-6, 52

evru

3.5

3

2.5

2

1.5

1

0.5

KLambe & LSRM. - TraceSpec 2011, May 18-20, Pau (France) -P.Vitorge. Models & Speciations of Actinoids.

5

6

7

8

-log₁₀ [H+]

Q

10

11

0.00

2.0

6.0

-log₁₀[H^{*}

10.0

KLambe & LSRM. - TraceSpec 2011, May 18-20, Pau (France) - P.Vitorge. Models & Speciations of Actinoids.

CO₃²⁻ limiting complexes of An ions

RO₂²⁻ V. Phrommavanh, et al. Migration'05 P.Vitorge et al. C.R.Acad.Sci.Chim. (2007) 978

+

2

0

9 10 11 12 13 14 15 16

pKa°

CO₃₁

MOZ

HCO₃

3

4 5 6

2

RO₂²⁻

8

PO43-

OH⁻

Pourbaix diagrams

We observe, understand, model -predictchemical speciation in equilibrium conditions

- This modelling at the macroscopic scale is based on thermodynamics
- Thermochemical data are measured...
- ...molecular modelling can be used to check our understanding of their numerical values: this is chemistry (hard cations, covalent bonding...)
- In many situations (surface or near surface pollutions, accidents...) equilibrium conditions are not achieved!
 - Kinetics cannot always be ignored as typically for oxides (UO₂²⁺, SO₄²⁻...), solids, organics, organic matter, living matter...
 - Transport (of gaseous or soluble species, or as sorbed on colloids)

0 ...

