From uranothorites to coffinite: a solid solution route to the thermodynamic properties of USiO₄

Stéphanie Szenknect^{1,*}, Dan T. Costin¹, Nicolas Clavier¹, Adel Mesbah¹, Christophe Poinssot², Pierre Vitorge³ and Nicolas Dacheux¹.

¹ ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols-sur-Cèze cedex, France

² CEA, Nuclear Energy Division, DRCP/DIR, CEA Marcoule, Bât. 400, BP 17171, 30207 Bagnols-sur-Cèze cedex, France

³ CEA, Nuclear Energy Division, DPC/SECR, Site de Sclay, Bât. 391, 91191 Gif-sur-Yvette, France

Table S1. Equilibrium constants and variations of the standard enthalpy associated with the main reactions considered in the speciation calculations. Thermodynamic data are extracted from the LLNL database¹ included in the Phreeqc.2 geochemical code².

Reaction stoichiometry	log (K)	$\Delta_{R}H^{\circ} (kJ \cdot mol^{-1})$
$2H_2O \rightleftharpoons O_2 + 4H^+ + 4e^-$	-85.9951	559.543
$SiO_2 + H_2O \rightleftharpoons (HSiO_3)^- + H^+$	-9.9525	25.991
$SiO_2 + 2H_2O \rightleftharpoons (H_2SiO_4)^{2-} + 2 H^+$	-22.96	-
$4 \text{ SiO}_2 + 8 \text{ H}_2\text{O} \leftrightarrows [\text{H}_4(\text{H}_2\text{SiO}_4)_4]^{4-} + 4 \text{ H}^+$	-35.94	-
$4 \text{ SiO}_2 + 8 \text{ H}_2\text{O} \leftrightarrows [\text{H}_6(\text{H}_2\text{SiO}_4)_4]^{2-} + 2 \text{ H}^+$	-13.64	-
$\mathbf{U}^{4+} + \mathbf{H}_2\mathbf{O} \leftrightarrows \left[\mathbf{U}(\mathbf{OH})\right]^{3+} + \mathbf{H}^+$	-0.5472	46.9183
$U^{4+} + 4 H_2O \leftrightarrows U(OH)_4 + 4H^+$	-4.54	78.755
$U^{4+} + Cl^{-} \leftrightarrows (UCl)^{3+}$	+1.7073	-18.9993
$UCl_4 + \leftrightarrows U^{4+} + 4Cl^{-}$	21.9769	-240.719
$(\mathrm{UO}_2)^{2+} + 2 \mathrm{H}_2\mathrm{O} \leftrightarrows \mathrm{UO}_2(\mathrm{OH})_2 + 2 \mathrm{H}^+$	-10.3146	-
$(\mathrm{UO}_2)^{2+} + 3 \mathrm{H}_2\mathrm{O} \leftrightarrows [\mathrm{UO}_2(\mathrm{OH})_3]^- + 3 \mathrm{H}^+$	-19.2218	-
$(UO_2)^{2+} + 4 H_2O \leftrightarrows [UO_2(OH)_4]^{2-} + 4 H^+$	-33.0291	-
$(\mathrm{UO}_2)^{2+} + \mathrm{Cl}^- \leftrightarrows (\mathrm{UO}_2\mathrm{Cl})^+$	+0.1572	8.00167
$(\mathrm{UO}_2)^{2+} + 2 \operatorname{Cl}^2 \leftrightarrows \operatorname{UO}_2 \operatorname{Cl}_2$	-1.1253	15.0013
$(\mathrm{UO}_2)^{2+} + 2 \mathrm{H}_2\mathrm{O} + \mathrm{SiO}_2 \leftrightarrows (\mathrm{UO}_2\mathrm{H}_3\mathrm{SiO}_4)^+ + \mathrm{H}^+$	-1.9111	-
$Th^{4+} + Cl^{-} \leftrightarrows (ThCl)^{3+}$	+0.9536	-
$Th^{4+} + 2 Cl^{-} \rightleftharpoons (ThCl_2)^{2+}$	+0.6758	-
$Th^{4+} + 3 Cl^{-} \Leftrightarrow (ThCl_3)^{+}$	+1.4975	-
$Th^{4+} + 4 Cl^{-} \leftrightarrows ThCl_4$	+1.0731	-
$2 \text{ Th}^{4+} + 2 \text{ H}_2\text{O} \leftrightarrows [\text{Th}_2(\text{OH})_2]^{6+} + 2 \text{ H}^+$	-6.4618	63.718
$4 \text{ Th}^{4+} + 8 \text{ H}_2\text{O} \iff [\text{Th}_4(\text{OH})_8]^{8+} + 8 \text{ H}^+$	-21.7568	245.245
$6\text{Th}^{4+} + \text{H}_2\text{O} \leftrightarrows [\text{Th}_6(\text{OH})_{15}]^{9+} + 15 \text{ H}^+$	-37.7027	458.248

Table S2. Thermodynamic data at 298 K selected in the NEA-TDB II³ used for the determination of $\Delta_R G^\circ$, $\Delta_R H^\circ$, $\Delta_R S^\circ$.

Species	$\Delta_{f}G^{\circ} (kJ.mol^{-1})$	$\Delta_{\rm f} {\rm H^{\circ}}({\rm kJ.mol^{-1}})$	$\Delta_{f}S^{\circ}(J.mol^{-1}.K^{-1})*$	Ref.
H^+	0	0	0	3
OH	-157.22 ± 0.07	-230.02 ± 0.04	-244.3 ± 0.2	3
H_2O	-237.14 ± 0.04	-285.83 ± 0.04	-163.4 ± 0.1	3
U ⁴⁺	-529.86 ± 1.76	-591.2 ± 3.3	-205.8 ± 1.8	3
Th ⁴⁺	-704.78 ± 5.3	-768.7 ± 2.3	-214.5 ± 2.2	4
$H_4SiO_4(aq)$	-1307.7 ± 1.2	-1456.96 ± 3.16	-500.9 ± 1.6	3
$UO_2(cr)$	-1031.83 ± 1.00	-1085 ± 1	-178.4 ± 0.3	3
$ThO_2(cr)$	-1168.99 ± 3.50	-1226.4 ± 3.5	-192.7 ± 1.1	4
SiO_2 (cr)	-856.287 ± 1.16	-910.7 ± 1.0	-182.6 ± 0.4	3

*standard entropy of formation of compounds calculated from the compounds in their standard state with: $\Delta_f S^\circ = \sum_i v_i S^\circ_{m,i}$

Figure S1. Variation of $\Delta_f G^\circ$ of uranothorite solid solutions versus the uranium mole fraction. Data from literature are listed in Table 5.

REFERENCES

- 1. Johnson, J. W.; Oelkers, E. H.; Helgeson, H. C., *Comput. Geosci.* **1992**, 18, 899–947.
- 2. Parkhurst, D. L.; Appelo, C. A. J. User's guide to PHREEQC (Version 2) A computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. U.S.G.S. Water-Resources Investigations Report 99–4259; 1999.
- Guillaumont, R.; Fanghänel, T.; Fuger, J.; Grenthe, I.; Neck, V.; Palmer, D. A.; Rand, M. H., Update on the chemical thermodynamics of uranium, Neptunium, Plutonium, Americium and Technecium. North holland Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 2003; Vol. 5, p 919.
- 4. Rand, M.; Fuger, J.; Grenthe, I.; Neck, V.; Rai, D., *Chemical thermodynamics of Thorium*. OECD Publications: Paris, France, 2009; Vol. 11, p 900.