COMMISSARIAT A L'ENERGIE ATOMIQUE

CEA-R-5270

B.16

COMPLEXATION DE LANTHANIDES ET D'ACTINIDES TRIVALENTS PAR LA TRIPYRIDYL-TRIAZINE APPLICATIONS EN EXTRACTION LIQUIDE-LIQUIDE

par

Pierre VITORGE

INSTITUT DE RECHERCHE TECHNOLOGIQUE ET DE DEVELOPPEMENT INDUSTRIEL

DIVISION D'ETUDES DE RETRAITEMENT ET DES DECHETS ET DE CHIMIE APPLIQUEE

Centre d'Etudes Nucléaires de Fontenay-aux-Roses

Rapport CEA-R-5270

C.E.N. SACLAY 91191 GIF-sur-YVETTE Cedex FRANCE

PLAN DE CLASSIFICATION DES RAPPORTS ET BIBLIOGRAPHIES CEA

(Classification du système international de documentation nucléaire SIDON/INIS)

A 11 Physique théorique

"A B BURNERS

- A 12 Physique atomique et moléculaire
- A 13 Physique de l'état condensé
- A 14 Physique des plasmas et réactions thermonucléaires
- A 15 Astrophysique, cosmologie et rayonnements cosmiques
- A 16 Conversion directe d'énergie
- A 17 Physique des basses températures
- A 20 Physique des hautes énergies
- A 30 Physique neutronique et physique nucléaire
- B 11 Analyse chimique et isotopique
- B 12 Chimie minérale, chimie organique et physico-chimie
- B 13 Radiochimie et chimie nucléaire
- B 14 Chimie sous rayonnement
- B 15 Corrosion
- B 16 Traitement du combustible
- B 21 Métaux et alliages (production et fabrication)
- B 22 Métaux et alliages (structure et propriétés physiques)
- B 23 Céramiques et cennets
- B 24 Matières plastiques et autres matériaux
- B 25 Effets des rayonnements sur les propriétés physiques des matériaux
- B 30 Sciences de la terre
- C 10 Action de l'irradiation externe en biologie
- C 20 Action des radioisotopes et leur cinétique

C 30 Utilisation des traceurs dans les sciences de la vie

1910 A.B.

ł

- C 40 Sciences de la vie : autres études
- C 50 Radioprotection et environnement
- D 10 Isotopes et sources de rayonnements
- D 20 Applications des isotopes et des ravonnements
- E 11 Thermodynamique et mécadique des fluides
- E 12 Cryogénie
- E 13 Installations pilotes et laboracoires
- E 14 Explosions nucléaires
- E 15 Installations pour manipulation le matériaux radioactifs
- E 16 Accélérateurs
- E 17 Essais des matériaux
- E 20 Réacteurs nucléaires (en général)
- E 30 Réacteurs nucléaires (types)
- E 40 Instrumentation
- E 50 Effluents et déchets radioactifs
- F 10 Economie
- F 20 Législation nucléaire
- F 30 Documentation nucléaire
- F 40 Sauvegarde et contrôle
- F 50 Méthodes mathématiques et codes de calcul
- F 60 Divers

Rapport CEA-R-5270

Cote-matière de ce rapport : B,16

DESCRIPTION-MATIERE (mots clefs extraits du thesaurus SIDON/INIS)

en français

en anglais

COMPLEXES D'AMERICIUM COMPLEXES DE CURIUM COMPLEXES DE TERRES RARES EXTRACTION PAR SOLVANT ACIDE NITRIQUE PRODUITS DE FISSION TRAITEMENT DES COMBUSTIBLES IRRADIES "OORDINATS DECANOLS ACIDES ORGANIQUES COLLOIDES

AMERICIUM COMPLEXES CURIUM COMPLEXES RARE EARTH COMPLEXES SOLVENT EXTRACTION NITRIC ACID FISSION PRODUCTS REPROCESSING LIGANDS DECANOLS ORGANIC ACIDS COLLOIDS RAPPORT CEA-R-5270 - Pierre VITORGE

COMPLEXATION DE LANTHANIDES ET D'ACTINIDES TRIVALENTS PAR LA TRIPYRIL-TRIAZINE, APPLICATIONS EN EXTRACTION LIQUIDE-LIQUIDE. ì

 $\frac{Sogmatire}{x} = La TPT2 (tripyridy1(2)) - 2,4,6 triazine - 1,3,5) est une dibase : pKa1 = 3,8 et pKa2 = 2,7 (I = 1M, KCL) pouvant se polymériser en (HPTP2) <math>\frac{x}{x}$ (x = 3 ou 4). La valeur du logarithme de la constante de formation du complexe Am TPT2³⁺(4,22) est supérieure à celle des complexes de lanthanides : 2,23/3,16/2,81/3,35/3,11/3,00/2,50/2,43/2,43/2,03/2,00/2,09 et 2,3 respectivement pour La/Pr/Nd/Sm/Eu/Gd/Tb/Dy/Ho/Er/Tm/Yb et Lu.

La TPTZ, associée à un extractant acide tel que : acide dibutylthiophosphorique (HDBTP), acide di 2-ethylhexyldithiophosphorique (HDEHDTP acide a bromocaprique (Ha Br C10), ou acide dinonylnaphtalène sulfonique (HDNNS) permet d'extraire sélectivement l'américium contenu dans des solutions d'acide nitrique.

L'Am (III), le Cm (III) et les lanthanides sont extraits dans le décanol sous les formes M($_{\rm M}$ Br C₁₀ $_{\rm J}$ $_{\rm S}$ et MTPT2($_{\rm M}$ Br C₁₀ $_{\rm J}$; ce dernier complexe est sélectif des actinides par rapport aux lanthanides (logarith NAPPORT CEA-R-5270 - Pierre VITORGE

LANTHANIDES AND TRIVALENT ACTINIDES COMPLEXATION BY TRIPYRIDYL TRIAZI-NE, APPLICATIONS TO LIQUID-LIQUID EXTRACTION.

Summary - The protonation constants of TPT2 (tripyridyl (2) - 2,4,6 triazine 1,3,5) have been measured : $pKa_1 = 3.8$ and $pKa_2 = 2.7$. (1 = 1M, KC1). TPT2 can be autoassociated as (HTPT2)³⁺ formation constant (log β = 4.22) is more stable than the lanthanides ones : log β_1 = 2.23/3.16/2.81/3.35/3.11/3.00/2.50/2.43/ 2.43/2.03./2.00/2.09 and 2.3 respectively for La/Pr/Nd/Sm/Eu/Gd/Tb/Dy/ Ho/Er/Tm/Yb and Lu.

The selectivity of TPTZ is applied to investigate the groups separatio actinides (111)-lanthanides by a liquid-liquid extraction procedure, from nitric acid into several diluents. Acidic extractants dibutylthio phosphoric, di-2 éthylhexyldithiophosphoric, α -bromocapric (H α B Cr₁₀ or dinonylnaphtalensulfonic (HDNNS) acid were used to insure the organic complexes electroneutrality.

Am (III) and Cm (III) and lanthanides are extracted into decanol as $M(\alpha Br C_{10})_3$ and MTP2 ($\alpha Br C_{10})_3$ this last complex is more stable with actinides

me des constants d'extraction - 3,1 et - 3,9 respectivement). Le HDNNS et la TPTZ forment un polymère en phase organique qui permet d'extraire dans du t-butylbenzène 20 fois mieux les actinides que les lanthanides à partir d'HNO₃ 0,3 M. Pour rendre compte qualitativement et quantitativement de l'extraction, les micelles inverses HDNNS et TFTZ ont été considérés comme 3ème phase.

1984

210 p.

Commissariat à l'Energie Atomique - France

(III) than with lanthanides (log Kew = - 3.1 and - 3.9 respectively). HONNS-TPTZ mixtures form inverted micelles in t-butylbenzene and can extract the actinides 20 times better than the lanthanides from 0.3 M $\rm HNO_3$.

We explained qualitatively and quantitatively the extraction data, by assuming that HDNNS-TPTZ micelles behave like a 3^{rd} phase.

1984

210 p.

Commissariat à l'Energie Atomique - France

THESE

ŝ

PRESENTEE

A L'UNIVERSITE PIERRE ET MARIE CURIE PARIS 6

POUR OBTENIR

LE GRADE DE DOCTEUR ES SCIENCES PHYSIQUES

раг

Pierre VITORGE

COMPLEXATION DE LANTHANIDES ET D'ACTINIDES TRIVALENTS PAR LA TRIPYRIDYL-TRIAZINE APPLICATIONS EN EXTRACTION LIQUIDE-LIQUIDE

Soutenue le 25 novembre 1983, devant le jury composé de :

- MM. R. GUILLAUMONT Président
 - **B. TREMILLON**
 - D. BAUER
 - R. ROSSET
 - A. CHESNE
 - C. MUSIKAS

- Rapport CEA-R-5270 -

Centre d'Etudes Nucléaires de Fontenay-aux-Roses Institut de Recherche Technologique et de Développement Industriel Division d'Etudes de Retraitement et des Déchets et de Chimie Appliquée Département de Génie Radioactif Service des Etudes de Procédés Section de Chimie des Procédés

COMPLEXATION DE LANTHANIDES ET D'ACTINIDES TRIVALENTS PAR LA TRIPYRIDYL-TRIAZINE, APPLICATIONS EN EXTRACTION LIQUIDE-LIQUIDE

par

Pierre VITORGE

- Août 1984 -

Madame BAUER, Professeur à l'Université Pierre et Marie Curie, me fait l'honneur de juger ce travail ainsi que Monsieur ROSSET mon Professeur à l'Ecole Supérieure de Physique et Chimie Industrielle de Paris (ESPCI) qui a ban voulu se charger de diriger ce travail.

Ce travail a été effectué au Commissariat à l'Energie Atomique (CEA), Service des Etudes de Procédés (SEP) que dirigeait Monsieur CHESNÉ, dans le laboratoire de Monsieur MUSIKAS.

Messieurs GUILLAUMONT, Professeur à l'Université d'ORSAV PARIS-sud et TREMILLON, Professeur à l'Université Pierre et Marie Curie (PARIS VI), par l'intérêt qu'ils ont porté à ce travail, m'ont permis de le mener à son terme ; je tiens à les remercier des conseils et encouragements qu'ils m'ont apportés, notamment aux moments les plus délicats.

Je remercie également Monsieur LEVEQUE de la confiance qu'il m'a manifestée en me permettant de poursuivre une carrière de chercheur au CEA.

Je remercie sincèrement Michèle BONNIN ainsi que tous ceux dont la collaboration où les conseils m'ont réconforté pendant ces années. Je tiens également à exprimer ma gratitude à Monsieur BAUDIN, dont la compréhension et l'appui ne m'ont pas manqué pour achever la mise en forme de ce travail alors que j'avais entamé de nouvelles recherches dans le Département de Recherche et Développement Déchets (DRDD) qu'il dirige.

Thèse de DOCTORAT d'ETAT ès SCIENCES

Science Physiques

Résumé de la thèse

Thèse présentée par M. P. VITORGE Sous la direction de M. R. ROSSET Sujet :

1,221

A MELL POL FINE

Etude des complexes en milieux aqueux et organique des ions des éléments 5f, 4f et des produits de fission avec des ligands dont l'atome donneur est l'azote (imines, amines, macrocycles azotés).

Le retraitement des combustibles irradiés, dont l'un des buts est de permettre de valoriser l'uranium et le plutonium dans les surgénérateurs, pourrait être amélioré et remplir une mission supplémentaire, s'il était complèté par la séparation des actinides mineurs, américium et curium, des produits de fission et notamment des lanthanides. Cette séparation devra être effectuée à l'échelle industrielle par extraction liquide-liquide afin de l'intégrer dans le procédé (PUREX) universellement adopté pour retraiter les combustibles irradiés.

Les lanthanides ainsi que l'américium et le curium sont en solution d'acide nitrique sous forme d'ions trivalents : le comportement chimique de tous ces éléments est alors très voisin et il n'existe pas d'extractant réalisant dans ces conditions, la séparation de l'américium et du curium, des lanthanides. L'objectif de ce travail est donc de contribuer à la recherche de molécules ayant un groupement fonctionnel capable d'extraire sélectivement l'américium et le curium d'une solution d'acide nitrique.

Après un examen critique des extractants possibles, nous avons choisi la tripyridil - (2) - 2, 4, 6 triazine - 1, 3, 5 (TPTZ), molécule comportant un site potentiellement tridentate de trois imines conjuguées. Pour interpréter les résultats d'extraction de lanthanides et actinides, nous avons étudié la basicité de la TPTZ dans l'eau par deux méthodes : partage de la TPTZ entre du décanol et une solution aqueuse de force ionique 1 M (KCl) d'une part et variation spectrale de la TPTZ en fonction du pH. Nous avons mis en évidence l'existence de deux espèces HTPTZ⁺ et H₂TPTZ²⁺ et mesuré leurs pka : pka₁ = 3,8 \pm 0,2; pka₂ = 2,7 \pm 0,3 ; ainsi que le coefficient de partage, p₀^{TPTZ}, de la forme basique de la TPTZ, entre le décanol et une solution aqueuse de force ionique 1 M (KCl), qui est égal à 82. Les mésures de solubilité de la TPTZ en fonction du pH confirment ces valeurs lorsque [TPTZ]_t \leq 0,02 M ; la solubilité de la forme basique de la TPTZ est de 2,03 10⁻⁵M ; par ailleurs, la TPTZ protonée se polymérise c.: (HTPTZ)^{x+} où x = 3 ou 4.

Pour mesurer la sélectivité de la TPTZ, nous avons étudié la complexation des lanthanides et de l'américium trivalents en solution aqueuse de force ionique 1 M(KCl), par les mêmes méthodes que celles utilisées pour l'étude de la basicité de la TPTZ.

Il se forme les complexes MTPTZ³⁺. Les logarithmes de leurs constantes de stabilité sont :

Lanthanide	La	Pr ;	Nd 1	Sm	Eu	Gd	ть
Logβ ₁	2,23 ± 0,15	3,16 + 0,15	2,81 - 0,23	3,35 ± 0,09	3,11 [±] 0,12	3,00 ± 0,13	2,50 ± 0,23

і <u>р</u> у	I Ro	Er	Ţm.	УЪ	
1 1 2,43 ± 0,05	1 2,43 ± 0,25	2.03 ± 0,04 1	2,00 ± 0,05	2,09 ± 0,18	1 2,3 ± 0,4 1

actinide	1	Am
10g 6 ₁	!	4,22 I 0,17

La variation de la stabilité de ces complexes en fonction du numéro atomique des éléments de la série des lanthanides est faible, mais n'est pas monotone : il y a un maximum de stabilité pour le samarium. D'autre part, la TPTZ est sélective de l'américium. On peut mesurer cette sélectivité par log $\beta_1^{\rm Am} - \log \beta_1^{\rm Nd} = 1,41$ pour ces deux cations de rayons ioniques voisins et log $\beta_1^{\rm Am} - \log \beta_1^{\rm Lant} > 0,37$ pour l'ensemble des lanthanides. Cette sélectivité de la TPTZ est du même ordre de grandeur que celle d'autres ligands azotés : 0,9 pour les azotures / 1,1 pour les cyanures / 1,4 pour l'orthophénantroline. La sélectivité de la TPTZ pour l'américium vis à vis de la protonation : log $\beta_1^{\rm Am} - pKa_1 = 0,4$ est, par contre bien supérieure pour la TPTZ que pour ces autres ligands azotés (- 3,0/ - 5 / - 2,8 respectivement) ce qui est favorable à l'extraction de l'américium trivalent à partir de solution aqueuse acide.

En milieu méthanolique (5 % d'eau) où la TPTZ est très soluble, l'étude de la complexation du néodyme à partir des variations de ses bandes d'adsorption à 580 et à 800 nm est, contrairement au milieu aqueux, possible. Il se forme deux complexes de type sphère interne, Ln TPTZ³⁺ et Ln(TPTZ)³⁺. Dans ce milieu log $\beta_1^{Nd} = 4,05 / \log \beta_1^{Eu} = 4,52 \pm 0,13$ et log $\beta_2^{Ln} - \log \beta_1^{Ln} = 1 \pm 0,5$ pour Ln = Pr, Nd, Sm, Th, Ho, Er.

Pour utiliser la sélectivité de la TPTZ, nous avons cherché à extraire les cations Am TPTZ³⁺ et Cm TPTZ³⁺ d'une solution aqueuse dans divers solvants à l'aide d'anions hydrophobes. Les acides dibutylthiophosphorique (HDETP) dilué dans le xylène ou le nitrobenzène, di-2-ethylhexyldithiophosphorique (HDEHDTP) dilué dans le nitrobenzène, le xylène ou le t-butylbenzène, u-bromocaprique (HDBNS) dilué dans le décanol et dinonylnaphtalène sulfonique (HDNNS) dilué dans le t-butylbenzène, réalisent chacun cette extraction liquide-liquide sélective en présence de TPTZ.

L'extraction par le HDBTP associé à la TPTZ est peu sélective. L'extraction par le HDEHDTP associé à la TPTZ est très sélective dans le nitrobenzène mais le HDEHDTP n'est pas suffisamment stable. L'acide α -bromocaprique est monomère dans le décanol, ses sels de potassium et de sodium sont par contre polymérisés. Seul, il extrait les lanthanides et actinides trivalents dans le décanol sous la forme M(α BrC₁₀)₃ (où M = Eu, Nd, Tb, Yb, Am ou Cm). Le logarithme de la constante d'extraction est log Kex = - 9,6. La TPTZ s'associe à H α BrC₁₀ dans le décanol sous forme TPTZ (H α BrC₁₀)₂; le logarithme de la constante d'association dans ce diluant est log k = 1,7.

en de la companya de La genera de la companya de la compa La companya de la com

L'extraction synergique des lanthanides et actinides sous la forme MTPTZ (α BrC₁₀)₃ est sélective : log Kex = - 3,1 pour les actinides et - 3,9 pour les lanthanides.

La sélectivité maximale, (log f_D)_{max} = 0,8, où log f = (log $D^{\rm Am}$ ~ log $D^{\rm Ln}$), plus faible qu'en solution aqueuse, est effectivement atteinte par exemple pour $[H\alpha_{\rm BrC}{}_{10}]_{\rm t}$ = 1 M, $[{\rm TPTZ}]_{\rm t}$ = 0,1 M et pH = 2,3. Ces mécanismes d'extraction ont été vérifiés pour des concentrations en métal, Eu(III), allant de traces jusqu'à saturation du solvant.

Le HDNNS dans le t-butylbenzène, comme dans la plupart des solvants apolaires, est polymérisé. Seul, il extrait les lanthanides et actinides trivalents sous forme M(DNNS)₃(HDNNS)_{p-3} où p est le degré de polymérisation (de l'ordre de i2) et M = Am, Cm, Ce, Eu, Gd, Tb, Yb. La théorie classique de l'extraction par un échangeur cationique polymérisé nous a conduit à déterminer $\log \frac{Kex}{p} = 0,43$. L'extraction synergique par un mélange de HDNNS et de TPTZ a des performances plus intéressantes que celles des procédés de séparation des actinides trivalents des lanthanides, actuellement utilisés. Far exemple du HDNNS 0,1 M associé à de la TPTZ 0,1 M dans du t-butylbenzène extrait l'américium et le curium 20 fois mieux que les lanthanides, $(f_{\rm D}=20)$, à partir d'une solution aqueuse d'acide nitrique 0,3 M. Cette séparation garde les mêmes caractéristiques jusqu'à la saturation du solvant qui est effective à 6 molécules de HDNNS par molécule de métal extrait.

Il n'existait pas de théorie satisfaisante pour rendre compte de cette extraction synergique où un extractant peut être polymère. Nous proposons donc de rendre compte quantitativement de ce type d'extraction par une nouvelle interprétation basée sur le fait que les réactifs polymérisés interviennent, dans la loi d'action de masse, avec un exposant de 1. Nous montrons en particulier comment traiter le polymère - ici des micelles inverses - comme une troisième phase. Les calculs ainsi développés rendent bien compte des résultats expérimentaux. Ils montrent que la formule chimique de la micelle peut s'écrire sous la forme : and the second second

A MARCH WARRANT

 $[(MTPTZ (DNNS)_3)_1 (M (DNNS)_3)_k (TPTZ (HDNNS)_2)_i (TPTZHDNNS)_i (HDNNS)_{\sigma}]$

où q = p - 3(1+k)- i - 2j,avec l + $k \leq 2$, vraisemblablement p \simeq 12. Nous montrons qu'une mi elle de cette composition est stériquement compatible avec les données connues sur la taille de ces micelles et de ses divers constituants. SOMMAIRE

-`^<u>`</u>

The second s

:.

A contract the second

and a second sec

	<u> </u>
RESUME	
LISTE DES FIGURES	4
LISTE DES TABLEAUX	6
AVANT-PROPOS : LUS DECHETS NUCLEAIRES	7
	9
INTRODUCTION	-
I. <u>PREMIERE PARTIE</u> : COMPLEXATION DES LANTHANIDES ET ACTINIDES PAR LA TRIPYRIDYL-TRIAZINE (TPTZ)	13
I.1. Complexation des lanthanides et actinides par les ligand azotés : bibliographie et choix d'un ligand I.1.1. Propriétés chimiques des lanthanides et actinides I 1 1 a Structure électronique et propriétés	<u>is</u> 14 5 14
chimiques	14
I.1.1.b. Propriétés chimiques en solution aqueuse	e 15
1.1.2. Ligands acoles mono et pidentates	17
I.1.2.b. L'orthophénantroline (ophen)	18
I.1.3. Macrocycles azotés	19
I.1.3.a. L'effet macrocyclique	19
I.1.3.b. Basicité de macrocycles azotés	21
1.1.3.C. Complexation par des macrocycles azotés I.1.3.d. Oxy30-réduction de métallomacrocycles I.1.3.e. Macronologier de métallomacrocycles I.1.3.e. Macronologier de métallomacrocycles	21
ou actinides trivalents	23
I.1.4. La TPTZ	30
I.1.4.a. Propriétés chimiques en solution aqueus	e 31
I.1.4.b. Composés solides	32
I.1.4.C. Comparaison avec d'autres pyridines	33
1.1.5. Conclusion : choix de la TP12	35
I.2. Basicité de la TPTZ	36
1.2.1. Variations du spectre d'absorption de la TPTZ en	
fonction du pli	36
I.2.1.a. Résultats expérimentaux et interprétati multitution	on 56
qualitative I 2 1 b Internétation quantitative	38
I.2.1.C. Discussion sur les mesures d'absorbance	. et
les méthodes d'exploitation des résulta I.2.2. Partage de la TPTZ entre le décanol et une phase	ts 43
aqueuse de pH variable	44
I.2.2.a. Choix du décanol	44
I.2.2.b. Comportement de la TPTZ dans le décanol	45
I.2.2.C. Interprétation du partage de la TPTZ, pa	r .
les constantes d'hydrophobie de fragmen	ts 46
1.2.2.0. Protonation de la TPTZ en phase aqueuse	49

Panes

and the second se

I.2.3. Variations de la solubilité de la TPTZ, en 50 fonction du pH 51 I.2.3.a. Solubilité en milieu neutre 5Z I.2.3.b. Solubilité en milieu acide 56 I.2.4. Discussion sur la basicité de la TPTZ I.3. Complexation de lanthanides et de l'américium trivalents 58 par la TPIZ 1.3.1. Complexation en solution aqueuse 58 I.3.1.a. Variations du spectre d'absorption de la TPTZ en fonction de la concentration en 58 lanthanide I.3.1.b. Partage de la TPTZ entre le décanol et des solutions aqueuses de lanthanides 58 I.3.1.C. L'américium trivalent 60 I.3.1.d. Discussion sur la complexation en 61 solution aqueuse 64 I.3.2. Etudes dans le méthanol 65 I.3.2.a. Formation du complexe Nd(III) TPTZ 66 I.3.2.b. Formation du complexe Nd(III) (TPTZ) I.3.2.C. Rôle de l'eau sur la formation des 68 complexes Neodyme-TPTZ dans le méthanol II. DEUXIEME PARTIE : INFLUENCE DE L'ADDITION DE LA TPTZ SUR L'EXTRACTION DES LANTHANIDES ET ACTINIDES TRIVALENTS PAR DES ECHANGEURS CATIONIQUES 70 DANS DIVERS SOLVANTS 71 II.1.Introduction II.2.Généralités sur l'extraction liquide-liquide 73 II.2.1.Choix des extractants 75 73 II.2.1.a.Choix du type d'extraction 74 II.2.1.b.Micelles II.2.1.C.Essais d'échangeurs cationiques pour extraire EuTPTZ³⁺ et AmTPTZ³⁺ dans 76 divers solvants II.2.2.Lois thermodynamiques de l'extraction liquide-79 liquide 79 II.2.2.a.Propriétés chimiques des extractants II.2.2.b.Extraction par un échangeur cationique 84 monomère II.2.2.C.Extraction par un échangeur cationique 84 polymérisé II.2.2.d.Saturation en métal de la phase organique 87 II.2.2.e.Extraction par synergie entre un échangeur 92 cationique et un extractant neutre II.2.2.f Expressions théoriques des constantes 92 d'extraction II.3.Extraction par l'acide α-bromocaprique (HαBrC10) et la 95 TPTZ dans le décanol 95 II.3.1.Propriétés des extractants 95 II.3.1.a.L'acide *a-bromocaprique* II.3.1.b.Influence de la concentration en acide

α-bromocaprique sur le partage de la TPTZ 97

n werdenten einer einer

II.3.2.Extraction de lanthanides et d'actinides trivalents II.3.2.a.Extraction par l'acide a-bromocaprique	100 100
11.5.2.D.Extraction par l'acide d-bromocaprique et la TPTZ	100
11.3.3.Discussion sur l'extraction par la TPTZ et l'acide α-bromocaprique	108
II.4.Extraction par l'acide dinonylnaphatalène sulfonique et	
la TPTZ dilués dans le t-butylbenzène	110
II.4.1. Propriétés des extractants	110
II.4.1.a.Bibliographie	110
II.4.1.b.Extraction de K ⁺ et Na ⁺ par le HDNNS	111
II.4.1.C.Rétention de la TPTZ par le HDNNS dans	
le t-butulbenzène	112
II.4.2.Extraction de lanthanides et d'actinides triva-	
lents nar leHDNNS	114
II.4.3.Extraction par la TPT7 et le HDNNS	116
II 4 3 2 Pácultate omárimentaux at interprá-	
tation gualitative	116
II A 3 b	123
II.4.4 Discussion cum l'extraction par la TDTZ et le	
HDNS	127
CONCLUSION	132

ANNEXE	I	 Modes 	opératoires
--------	---	---------------------------	-------------

II - Résultats expérimentaux

III - Exploitation des résultats

IV - Notations

BIBLIOGRAPHIE

PROGRAMMES DE CALCUL : sur demande,

LISTE DES FIGURES

Numéro		Paragraphe	Page
1	Caractéristiques des combustibles provenant des réacteurs nucléaires	Introduction	11
2	Période de quelques émetteurs α et de lan- thanides présents dans les combustibles irradiés.	I.1.1.a.	12
3	Ligands pyridiniques	I.1.2.b.	18
4	Produit de dégradation de la TPTZ	I.1.4.a.	32
5	Spectres d'absorption dans l'ultraviolet, de solutions de TPTZ à différents pH	1.2.1.a.	37
6	Valeurs des constantes d'acidité, compatibles avec les mesures d'absorbance	i I.2.1.b.	40
7	Proportion et contribution de chaque espèce de TPTZ à l'absorbance cotale		43
8	Partage de la TPTZ entre le décanol et une phase aqueuse de pH > O	I.2.2.d.	49
9	Loi de Beer pour la TPTZ en milieu neutre	I.2.3.a.	51
10	Solubilité de la TPTZ en milieu acide	I.2.3.b.	54
11	Spectres d'absorption ultraviolet de TPTZ dans des solutions de Néodyme	I.3.1.a.	59
12	Partage de la TPTZ entre le décanol et des solutions aqueuses de lanthanides	I.3.1.b.	60
13	Stabilité de complexes de TPTZ avec des lan- thanides et l'américium trivalent	I.3.1.d.	63
14	Complexation du Néodyme par la TPTZ dans le méthanol	I.3.2.a.	65
15	Variation du spectre de la TPTZ dans le méth nol, lors de la formation Eu(III)TPTZ	a-	66
16	Variation du spectre du Néodyme dans le méth nol, lors de la formation du complexe Nd(III)(TPTZ) ₂	a- 1.3.2.b.	67
17	Spectres d'absorption du Néodyme dans l'eau et le méthanol	I.3.2.d.	68
18	Exemples de micelles	II.2.1.b.	75

٢

-

Numéro		Paragraphe	Page
19	Détermination du degré de polymérisation d'un acide et de sa base conjuguée, par dosages pH-métriques dans un système à deux phases.	II .2.2. a.	83
20	Saturation d'un échangeur cationique en phase organique, par des lavages succes- sifs de phases aqueuses chargées en ions métalliques	II.2.2.d.	91
21	Résultats de dosages de l'acide α-bromoca- prique dilué dans le décanol, par de la potasse aqueuse.	II.3.1.a.	96
22	Influence dela concentration en acide α -bromocaprique, sur le partage de la TPTZ	II.3.1.b.	<u>98</u>
23	Influence de la concentration des diverses espèces chimiques sur l'extraction de lan- thanides et d'actinides trivalents par la TPTZ et l'acide α-bromocaprique dans le décanol	II.3.2.d.	101
24	Schéma d'une micelle de HDNNS	II.4.1.a.	111
25	Extraction de K ⁺ par le HDNNS dans le t- butylhenzène	II.4.1.b.	112
26	Extraction des ions Eu ³⁺ et Am ³⁺ par le HD≷NS dans le t-butylbenzène	II.4.2.a.	114
27	Extraction de lanthanides et d'actinides trivalents par la TPTZ et le HDNNS dans le t-butylbenzène.	II.4 .3. 2.	116
28	Représentation d'un motif AmTPTZ(DNNS) ₃ dan: une micelle [(AmTPTZ(DNNS) ₃) ₂ (TPTZ(HDNNS) ₂) (TPTZHDNNS) ₂]	s II.4.4.) ₂	131

-

 $\mathbf{\hat{\mathbf{x}}}$

LISTE DES TABLEAUX

٩

1

Numéro		Paragraphe	Page
I	Etats d'oxydation des lanthamides et actinides	I.1.1.b.	16
II	Constantes de complexation des ions trivalents des lanthanides et actinides en solution aqueuse		16
111	Constantes de formation de cyanures et d'azo- tures d'actinides et de lanthanides	I.1.2.a.	17
IV	Effet macrocyclique	I.1.3.a.	20
ν	Degrés d'oxydation de métaux des séries de transition d, dans des métallo-macrocycles	I.1.3.d.	22
VI	Estimation de distances ion métallique - imines de différents macrocycles et de TPTZ	I.1.3.e.	24
VII	Angles entre le noyau triazine et ses substi- ants pyridiniques	I.1.4.b.	34
VIII	Modèles pouvant rendre compte de la protonation de la TPTZ	I.2.1.d.	42
IX	Solubilité de la TPTZ dans divers solvants	I.2.2.a.	45
х	Constantes de stabilité des complexes de TPTZ avec des lanthanides et l'américium trivalent	I.3.1.d.	62
XI	Sélectivité de la TPTZ et d'autres ligands azot, pour l'américium trivalent vis-à-vis des ions H et Nd ³⁺	és +	63
XII	Acidité d'échangeurs cationiques	II.2.1.c.	77
XIII	Extraction d'europium et d'américium trivalents par des échangeurs cationiques associés à la TPTZ dans divers diluants.		77

Ĩ

AVANT-PROPOS

LES DÉCHETS NUCLÉAIRES

En France, la production d'énergie électronucléaire doit passer de 10 % de la production d'énergie électrique en 1975 à 70 % en 1990. Ce développement de l'industrie nucléaire s'accompagne de la production d'un certain nombre d'éléments chimiques présents dans les combustibles irradiés. L'uranium et le plutonium représentent l'essentiel des éléments constituant le combustible irradié dans un réacteur nucléaire (Figure 1).

Lors du retraitement hydrométallurgique des combustibles irradiés, ils sont séparés à mieux que 98 % de la solution d'acide nitrique de dissolution. Le reste constitue la majeure partie des déchets dits de "haute activité", ce sont essentiellement des produits de fission et des actinides, Np, Am, Cm, actuellement vitrifiés pour être stockés. Le retraitement produit également des déchets de "moyenne" et "faible activité". Tous ces déchets contiennent plus ou moins d'éléments artificiels émetteurs α (Figure 1) (principalement de l'uranium, du plutonium, du neptunium, de l'américium et du curium) dont la décroissance radioactive est beaucoup plus lente que la décroissance des produits de fission (Figure 2).

On a donc proposé de gérer séparément les émetteurs α du reste des déchets <u>/</u>161_7. Ces émetteurs α pourraient d'ailleurs être transmutés et fissionnés comme le plutonium dans des surgénérateurs / 163 7.

Cette séparation devra être effectuée avant la vitrification des déchets de "haute activité". C'est pour apporter quelques données sur ce problème que nous avons entrepris les recherches qui font l'objet de ce travail de thèse. Le 11 décembre 1981, le gouvernement a demandé à un groupe d'experts d'examiner le retraitement industriel des combustibles irradiés. Ce groupe, présidé par le professeur R. Castaing, membre de l'Académie des Sciences, recommande notamment $_$ 170 $_$ 7 le développement et l'industrialisation d'un procédé de séparation des émetteurs α des déchets. Le retraitement ne serait alors plus uniquement justifié pour valoriser l'uranium et le plutonium dans les surgénérateurs : le retraitement permettrait également de résoudre le problème des déchets nucléaires. ÷

INTRODUCTION

.....

7

 \mathbf{x}

La séparation des émetteurs a du reste des déchets nucléaires pose le problème de la séparation, par extraction liquide-liquide, de l'uranium, du plutonium, du neptunium, de l'américium et du curium à partir des solutions d'acide nitrique contenant tous les produits de fission. Le comportement chimique particulier des trois premiers de ces éléments peut être mis à profit pour réaliser une telle séparation, par exemple : l'uranium et le plutonium sont produits industriellement grâce à la sélectivité du phosphate de tributyle (TBP) pour U (V1) et Pu (IV). Par contre, l'américium et le curium ont des comportements chimiques très voisins de ceux de certains éléments, les lanthanides, plus abondants dans les solutions de produits de fission (Figure 1).

Des prévisions théoriques, confirmées par des premiers essais expérimentaux [1, 3, 4] indiquent que [164] : "Un système qui devrait susciter des études d'avenir, met en jeu l'interaction des actinides avec des atomes donneurs "mous" tels N et S, pour extraire sélectivement ces éléments "(dont font partie l'américium et le curium). Nous chercherons à prolonger les études déjà faites avec des ligands azotés [3, 4].

Dans une première partie, après un bref rappel du comportement chimique des lanthanides et actinides trivalents, nous expliquerons notre choix de la tripyridyltriazine (TFTZ). Sa basicité puis la complexation des lanthanides et de l'américium seront étuliées pour comparer l'affinité relative des ions h^+ , Ln^{3+} et Am^{3+} vis-à-vis de la TPTZ et des autres donneurs azotés.

Bans la deuxième partie, nous appliquerons cette sélectivité à la séparation de l'américium et du curium des lanthanides, par extraction liquide-liquide. Nous tenterons de déterminer les mécanismes d'extraction pour dégager les paramètres importants intervenant dans une telle séparation y compris dans le cas - non classique - où les extractants sont polymérisés.

Une partie des résultats expérimentaux sous forme de figures, le détail des calculs et un certain nombre de renseignements pratiques sont donnés en annexe.

Principaux radionucléides	Masse (grammes par tonne de combustible)	Activité (curies)
232 234 235 235 236 238 U 238	0,61 10 ⁻³ 125 7 980 4 550 943 000	1,3 10 ⁻² 0,762 1,7 10 0,288 0,314
237 239 _{Np}	483 0,78 10 ⁻⁴	0,34 18,3
238 239 ^{Pu} 240 ^{Pu} 241 ^{Pu} 241 ^{Pu} 242 ^{Pu}	169 5 270 2 170 896 354	2 850 323 478 91 100 (B) 1,4
241 Am 242m Am 242 Am 242 Am 243 Am 243 Am	162 0,93 1,1 10 ⁻⁵ 94,4	555 9,1 9,1 18,3
242 243Cm 244Cm 245Cm 245Cm 246Cm	9,8 10 ⁻² 7,56 10 ⁻² 26,9 1,93 0,22	325 3,5 2 180 0,35 6,9 10 ⁻²
Total actinides	965 290	6 736 (α)
Produits en 144 Ce filiation 144 Ce 147 Pm 151 Pm 154 Sm 154 Su 155 Eu 155 Eu	23,6 51,6 43,3 35,2 3,5	75 200 75 200 47 900 1 100 9 520 1 690
Total lanthanides	157,2	210 610 (β, γ)
Total produits de fission	34 710	738 000

FIGURE 1 : CARACTERISTIQUES DES COMBUSTIBLES PROVENANT DES
REACTEURS ELECTRONUCLEAIRES A EAU SOUS PRESSION
D'après [170] ; oxyde d'uranium enrichi initiale-
ment à 3,25 % en 235 U ; taux de combustion : 33000 MWj.t⁻¹
refruidissement : 3 ans.

- 11 -

- -

1

ţ

Ĩ

a) Principaux lanthanides :

¹⁴⁴ Ce	147 _{Pm}	¹⁵¹ Sm	154 _{Eu}	¹⁵⁵ Eu
284 j	2,62 a	90 a	8,5 a	4,9 a

- b) Principaux actinides pour lesquels nous indiquons également les produits de décroissance par émission α (ou éventuellement β).

<u>FIGURE 2</u>: PERIODE DE QUELQUES EMETTEURS α ET DE LANTHANIDES PRESENTS DANS LES COMBUSTIBLES IRRADIÉS d'après (1707).

239_{Pu}

a = an j = jour h = heure

ب فلأ . ب

÷

PREMIERE PARTIE

1

ł

÷

COMPLEXATION DES LANTHANIDES ET ACTINIDES PAR LA TRIPYRIDYLTRIAZINE (TPTZ)

T.1. COMPLEXATION DES LANTHANIDES ET ACTINIDES PAR DES LIGANDS AZOTES : BIBLIOGRAPHIE ET RAISONS DU CHOIX DU LIGAND

On rappellera quelques propriétés chimiques des ions trivalents des lanthanides et des actinides, ainsi que des lois générales sur leur comportement en solution. On s'intéressera par ailleurs à un certain nombre de ligands azotés - y compris des macrocycles - afin de choisir une molécule potentiellement sélective des actinides trivalents.

1.1.1. Propriétés chimiques des lanthanides et des actinides

I.1.1.a. Structure électronique et propriétés chimiques

Dans la classification périodique des éléments, la série des lanthanides, du lanthane (Z = 57) au lutétium (Z = 71), correspond au remplissage de la couche 4f ; celle des actinides, de l'actinium (Z = 89) au lawrencium (Z = 103), au remplissage de la couche 5f.

Les électrons de valence des éléments de ces séries et de leurs ions sont respectivement peu et assez peu sensibles à leur environnement ; les ions trivalents des lanthanides sont donc durs, autrement dit, ils ont tendance à former des liaisons de caractère ionique. C'est également le cas, mais à un moindre degré, des ions trivalents des actinides. En effet, ainsi qu'il en est pour les séries des éléments de transition un effet d'écran permet d'expliquer que, lorsqu'on passe des lanthanides (4f) à la série suivante 5f (actinides), les électrons de valence sont moins lies au novau et par consequent plus sensibles à leur environnement chimique. En particulier, pour former les liaisons dans un complexe, les électrons de valence 5f s'échangent plus facilement avec ceux des atomes donneurs des ligands que ne le font les électrons de valence 4f des éléments de la série des lanthanides : la liaison ainsi formée peut donc avoir un caractère plus covalent dans le cas des actinides. Toutefois, il s'agit d'un effet secondaire souvent difficile à déceler dans le bilan énergétique global de formation des complexes et dont, par conséquent, les constantes de stabilité ne rendent pas compte dans ce cas.

į

the strate of a first state of the strategy of

 $\label{eq:static_stat$

and a state of the second seco

Cette différence de comportement des électrons explique les variations de certaines propriétés chimiques et physiques d'une série à l'autre / 1, 2, 3 et 4 /. Par exemple, les spectres de transitions électroniques des complexes des actinides sont modifiés, par rapport au spectre de l'ion non complexé, de façon plus importante que ceux des lanthanides.

Les lanthanides et les actinides forment des complexes stables avec des ligands durs (par exemple oxygénés). Pour de tels ligands, la stabilité du complexe dépend essentiellement du rayon ionique et de la taille de l'ion métallique : les différences entre les deux séries sont délicates à mettre en évidence. Des ligands plus mous, par exemple des ligands azotés : azoture, thiocyanate et cyanure $\sqrt{3}$, orthophénantroline $\sqrt{4}$ sont sélectifs des actinides trivalents vis-à-vis des lanthanides : les complexes d'actinides sont plus stables. Comme nous venons de le voir, on interprète généralement cette différence $\sqrt{1}$, 2, 3, 4 $\sqrt{2}$ par le caractère plus covalent pour les actinides, de la liaison ion métallique - atome donneur du ligand quand ce dernier est moins électronégatif que l'oxygène (azote, soufre par exemple).

I.1.1.b. Propriétés chimiques en solution aqueuse

En solution aqueuse, les lanthanides sont surtout observés à l'état d'ions trivalents (Tableau I) ; l'europium, le samarium et l'yttcrbium peuvent être réduits à la valence II (potentiels normaux d'oxydoréduction égaux à : - 0,43 ; < - 0,9 et - 1,15 V/E.N.H. respectivement d'après /⁵5_7).

Tous les transurani**ens** peuvent être obtenus plus ou moins facilement à la valence III, c'est la valence la plus stable des transplutoniens (excepté le Nobélium) (Tableau I).

Les constantes des équilibres pouvant exister simultanément à la complexation de lanthanides ou d'actinides en solution aqueuse pour un complexant donné, sont résumées tableau II : hydrolyse, complexation par des ions pouvant servir à imposer la force ionique (Cl⁻, NO₅⁻) à tauponner le pH(CH₃COO⁻) ou à doser les cations M^{3+} (F⁻). £

: \$

O observable

le plus stable

÷

 TABLEAU II. CONSTANTES DE COMPLEXATION DES IONS TRIVALENTS DES LANTHA-NIDES ET ACTINIDES EN SOLUTION AQUEUSE d'après [5] et [6].

Constante d'équilibre	Lanthanides	υ	Np	Pu	An	Ga
pk _s de M(OH) ₃	19 à 27	19	19	ZO	19	17
$pka_1 \text{ de } M^{3+}H_2 0 \neq MDH^{2+} + H^+$	5,5 a 7,2	6	8	8	6,2	6,3
pk _s de MF ₃	15 a 19	12	11	16	15	15
pk1 de M3+ + F ≠ MF2+	2.7 à 4,3	4	4	4	*	4
$pk_1 de M^{3*} + Cl^- z MCl^{2+}$	\$1			\$ 1		
$pk_1 de N^{3+} + NO_3^- \ddagger MNO_3^{2+}$	≤ 1			≤ 1		
$pk_1 de M^{3+} + Ol_3OD_2^- \neq MOH_3OD_2^{2+}$	1,7 à 3,0	3	3	2	3	3

1.1.2. Ligands azotës mono et bidentates

Comme nous venons de le rappeler, on peut prévoir qu'un ligand dur a tendance à former, avec les ions trivalents des éléments des séries lanthamide et actinide, des liaisons de caractère ionique ; par conséquent la stabilité de ce type de complexes dépend essentiellement de la taille des cations.

Comme les rayons ioniques des deux séries, déterminés à partir des distances atomiques métal-ligand dans des séries de composés isostructuraux sont compris entre 1,2 et 0,9 Å, ces ligands ne sont pas sélectifs des actinides ou des lanthanides.

Au contraire, les ligands mous forment, avec ces ions, des complexes peu stables, ou même instables dans l'eau ; mais on s'attend à ce qu'ils soient sélectifs des ions trivalents de la série des actinides par rapport à ceux des lanthanides. Pour mettre en évidence ces effets, les ligands azotés ont été suggérés car l'azote est moins électronégatif que l'oxygène (3 et 3,5 dans l'échelle de Pauling) et les ligands oxygénés n'ont pas la sélectivité cherchée.

Des résultats prometteurs ont effectivement été trouvés, nous les rappelons dans ce qui suit.

I.1.2.a. Ligands monodentates

TABLEAU III. CONSTANTES DE FORMATION DE CYANURES ET D'AZOTURES D'ACTI-NIDES ET DE LANTHANIDES d'après C. CUILLERDIER [3], mesurées par une méthode d'extraction par la TTA et [pour les valeurs entre panenthèses] par spectrophotométrie.

Ligands	Lanthanides			Actinides (trivalents)		
		log β ₁	log β _Z		log ^β 1	log ^β 2
N ₃	Nd	0,3(0,08)	0,9	Pu	(0,6)	
	Er	(0,08)		Am	1,2 (1,0)	1,5 (1,4)
	ΥЪ	0,3	0,9	Cn	(0,9)	(1,4)
CN	Nd	(2,85)		Am	(4)	

ŝ

La comparaison des constantes de complexation (Tableau III) par les cyanures et les azotures montre que ces ligands complexent sélectivement les ions trivalents des actinides par rapport à ceux des lanthanides: c'est par exemple le cas de l'ion actinide Am³⁺ comparé à l'ion lanthanide de rayon ionique voisin Nd³⁺.

1.1.2.b. L'orthophénantroline (ophen)

Les logarithmes des constantes de formation des complexes Ndophen³⁺, Smophen³⁺ et Amophen³⁺ sont respectivement 1,1 ; 1,2 et 2,5 $\angle 4 J$. Ce ligand azoté bidentate est donc également sélectif de l'américium trivalent par rapport au néodyme trivalent.

D'autres ligands azotés sont susceptibles de complexer les actinides trivalents en solution aqueuse : bipyridine, terpyridine, TPTZ, TPymT (Figure 3), ainsi que certains macrocycles azotés bien que cette propriété n'ait pratiquement pas été étudiée. La TPTZ et la TPymT (Figure 3), en particulier, présentent certaines originalités de structure par rapport aux autres pyridines. Avant d'analyser plus en détail les propriétés chimiques de la TPTZ qui est un réactif analytique courant, nous allons nous intéresser à une dernière catégorie de ligands : les macrocycles.

FIGURE 3 : LIGANDS PYRIDINIQUES

- 18 -

1.1.3. Macrocycles azotés

La synthèse [9, 10, 175, 176] et les propriétés chimiques des macrocycles [11 - 15] intéressent différents domaines de la chimie et de la biologie [12, 13, 15, 16].

Nous allons analyser les propriétés chimiques de cette nouvelle sorte de molécules pour savoir si leur caractère macrocyclique peut être utilisé pour la séparation de groupes actinides/lanthanides.

I.1.3.a. L'effet macrocyclique

Certains ligands linéaires polydentates entourent l'ion métallique qu'ils complexent pour prendre une conformation analogue à un macrocycle. La constante de formation du métallomacrocycle peut être supérieure, parfois d'un facteur 10^{10} , à celle du complexe avec le ligand linéaire comme on le constate en consultant le tableau IV.

C'est cette propriété, nommée "effet macrocycle", qui rend compte de l'originalité de la complexation par ces molécules polydentates. La compréhension de cet effet devrait permettre d'appréhender la réactivité des macrocycles vis-à-vis des ions trivalents des séries actinide et lanthanide. Voyons ce que l'on sait.

Selon MARGERUM <u>/</u>17, 18, 19, 22_7, l'effet macrocyclique est d'origine enthalpique (Tableau IV), car les atomes donneurs du ligand macrocyclique, plus protégés que ceux du ligand linéaire, sont moins solvatés : déplacer les molécules de solvatation consomme cet excès d'enthalpie. Bien qu'en accord avec les mesures calorimétriques disponibles (Tableau IV) cette explication ne fait pas l'unanimité / 20, 21 7.

L'interprétation de MARGERUM rend cependant compte des règles empiriques trouvées par ailleurs pour obtenir l'effet macrocyclique :

. la géométrie du macrocycle ne doit pas induire de contraintes (dans le métallomacrocycle) plus importantes que le ligand linéaire ; en particulier, la distance métal-atome donneur doit approcher une valeur idéale <u>/</u>23, 24, 25, 32_7, l'ion métallique étant au centre de la cavité ; la conformation du macrocycle doit être adaptée à la complexation <u>/</u>26, 27_7 ce qui explique que l'effet macrocyclique n'ait jamais été mis en évidence quand l'ion est en dehors de la cavité ; Noms des ligands :

- 1) 1, 4, 8, 11 tétraazacyclotétradécane
- 2) 1, 11 diamino 4, 8 diazadécane
- 3) 1, 4, 8, 11 tétrathiocyclotétradécane
- 4) 2, 5, 9, 12 tétrathiodécane
- 5) 1, 4, 7, 10 tétraazacyclotétradécane
- 6) 1, 10 diamino 4, 7 diazanonane
- 7) I, 13 diaza 4, 10 dithio 7 oxo cyclopentadécane
- 8) 1, 13 diamino 4, 7 dithio 7 oxo dodécane

Ion	Ligand macrocyclique	log β ₁	∆H (k.cal mole ⁻¹)	ΔS (cal. mole ⁻¹ degre ⁻¹)	Ligand linéaire	log ^{β1} (macro) ^β 1(lin.)	Réf
Ni(II)		22,2	- 3 - 16.8	- 2 14		6,8	18
Ni(II)		·3,9				2,2	19
Ni(II)	5	. 24,8 13,8	- 18,3 - 14,0	51,4 16,0		10,0	20
Cu(Iİ)		. 13,3 9,2	- 12,5 - 9,6	18,5 9,1	₿ ←	4,1	21
Pb(II)		. 6,8 7,5	- 9,5 - 9,5	- 1,0 - 2,3] () + H	- 0,7	

. les atomes donneurs du ligand non cyclique doivent être solvatés de sorte que la rupture de ces liaisons intervienne de façon importante dans le bilan énergétique de la complexation 2^{-19} .

£

Voyons les réactions chimiques connues de ces ligands macrocycliques afin d'essayer de prévoir leur réactivité vis-à-vis des ions trivalents actinides et lanthanides.

I.I.3.b. Basicité de macrocycles azotés

Les macrocycles sont des polybases dont la première fonction basique est de la même force que celle d'une amine linéaire (pKa de l'ordre de 11) ; il en est de même pour les fonctions basiques successives, sauf lorsque des liaisons hydrogèner intramoléculaires / 11_7 ou un empêchement stérique / 28 7 gênent la protonation.

Les imines sont bien moins basiques que les amines (pie compris entre 3 et 6 / 29, 30, 31/), mais cette fonction n'est stable dans l'eau que lorsqu'elle fait partie d'un cycle (pyridines, pyrimidines, macrocycles par exemple).

I.1.3.c. Complexation par des macrocycles azotés

L'ion métallique se situe souvent au centre de la cavité formée par le macrocycle (plusieurs atomes donneurs étant en position favorable à la complexation) ; mais quand cette cavité est trop petite, l'ion métallique se situe plus ou moins à l'extérieur jusqu'à former des "complexes sandwiches" [75, 117, 118]?. Quand la cavité est trop grande, le champ de ligand diminue ; quand elle est trop petite, il augmente. Le site de complexation du macrocycle est souvent pratiquement plan ; les ligands axiaux (situés de part et d'autre de ce plan) agissent directement sur les électrons de l'ion métallique [53]? et peuvent ainsi perturber les atomes donneurs du macrocycle par effet cis [15, 34, 35].

Les amines sont des donneurs plus durs que les imines [15, 36]. Avec le Fer (II) [37], le Cobalt (II) [38, 39, 40] et le Nickel (II) [41, 42] le champ de ligand varie suivant la séquence :

amine > imines non conjuguées > imines conjuguées

I.1.3.d. Oxydo-réduction et métallomacrocycles

L'oxydo-réduction de métallomacrocycles $\lfloor 14_7 \rfloor$ peut conduire à l'introduction (ou à la supression) sélective de doubles liaisons, transformant ainsi des amines en imines (ou l'inverse) : suivant que l'ion complexé est du nickel $\lfloor 38, 41-51_7 \rfloor$, du fer $\lfloor 52-54_7 \rfloor$, du cuivre $\lfloor 55_7 \rfloor$,

TABLEAU V : DEGRES D'OXYDATION D'IONS DE METAUX DES SERIES DE TRANSITION d, DANS DES METALLOMACROCYCLES.

ŝ

du cobalt $\sqrt{56}$, du zinc $\sqrt{57}$ ou du manganèse $\sqrt{58}$, le réarrangement tautomérique du métallomacrocycle $\sqrt{28}$, 37, 41, 52, 55, 59, 60, 61, 62 $\sqrt{7}$ après oxydation (ou réduction) de l'ion métallique est différent ; l'ion métallique peut ainsi être obtenu à des degrés d'oxydation inhabituels $\sqrt{62}$, 63 $\sqrt{7}$ (Tableau V), à moins que le ligand ne soit réduit en radical anion. Toutefois les réactions d'oxydoréduction de métallomacrocycles n'ont pratiquement pas été étudiées avec des cations lanthanides ou actinides.

I.1.3.e. Macrocycles azotés et ions lanthanides ou actinides trivalents

÷

L'utilisation de lanthanides (III) pour étudier, par RMN, des molécules organiques, a conduit à la synthèse de complexes lanthanide (III)-porphyrine $_74_7$: ils sont stables à l'air et dans les mélanges eau-solvant organique; l'ion se situe au-dessus du plan de la porphyrine $_75_7$. Une étude aux rayons X $_76_7$ de U(IV) complexé par une éthercouronne (macrocycle oxygéné) montre le cation au centre de la cavité : la taille de cette cavité est supérieure à celle de la plupart des macrocycles azotés décrits dans la littérature. Nous avons donc estimé la taille de la cavité de certains macrocycles azotés (Tableau VI) d'après les données de la littérature ou, à défaut, en mesurant les distances sur des modèles stéréochimiques éclatés (du type de ceux montrés figure 28) que nous avons construits à l'échelle 3 cm pour 1 Å.

Nous avons en effet noté précédemment que lorsque les atomes donneurs du macrocycle sont à une distance de l'ion métallique, proche d'un optimum, la complexation peut donner lieu à l'"effet macrocycle" (§ I.1.3.a.).

Nous limitons ces exemples (Tableau VI) à des imines pour les deux raisons suivantes :

- . les imines sont moins basiques que les amines (§ I.1.3.b.) ce qui est favorable à la complexation en milieu acide,
- . les imines sont moins dures que les amines (§ I.1.3.c.) ce qui serait favorable à une complexation sélective des actinides trivalents (§ I.1.1.a., I.1.2.a. et I.1.2.b.).

Ion	Distance (en Å)		
An ³⁺ Ln ³⁺	2,5 à 2,8		
An ⁴⁺	2,3 à 2,7		
MD2 ⁺ MD2 ²⁺	2,5 à 2,9		
Eu ²⁺ Sm ²⁺	2,9		

TABLEAU VI :	ESTIMATION DE DISTANCES ION METALLIQUE-IMINES DE DIFFERENTS
	MACROCYCLES ET DE LA TPTZ.

Nom et schéma du ligand	Ion	Distance azote-ion en Å	Méthode de mesure	Réf
	U(IV) U(IV) Th(IV)	2,43 2,39 à 2,45 2,38 à 2,43	RX. RX. RX.	118 117 117
		l		
	U (IV)	-	-	162
$R \rightarrow R \rightarrow R$		3,0	modèle stéréochi- mique	-
superphtalocyanine	1]	

- -
3 Fe (II) 2,04 RX.(ion dans le 119 Fe (II) 2,07 RX.plan du macro-120 cycle) Eu (III) 2,69 RMN (ion hors du 75 plan du macro-Yb(III) 2,56 cyclej 2,1 modèle stéréochi-~ ~ mique porphyrine 4 -/ ~ 142 3,1 modèle stéréochi-~ mique platyrine 5 RX.(ion au cen-tre de la 121, Ni (II) 2,05 123 122 Fe (II) 1,95 RX. cavité) floroborotris (2-aldoximo-6pyridy1) phosphine б Co (II) 2,0 calcul conforma-124 tionel (ion au 125 centre du plan central) 1,4,7,10,13,16 hexaazacyclododécane

······································				
7 NH 1,4,7,10,13,16 hexaazacycloocto-	-	2,5		126
NUH HIN décane	-	1,9 à 2,1	modèle stéréo- chimique	-
heptaazacycloduo- décanonane				
8				
	Ni (II)	1,81 à 1,93	RX.(molécule plane)	127
2,12,diméthyl - 3,7,11,17-tétra- azabicyclo /11,3,17 heptadéca 1(17),2,11,13,15-pentaène				
9	Fe (I I)	2,1 à 2,3	RX.(molécule	128
	Mn (II)	2,2 à 2,3	plane)	129
2,9-di(1-méthyl-hydrazino)1,10 phénantroline et 2,6-diacétylpy- ridine condensés				
	Mn (II)	X = NH	RX.	130
	<u> </u>	(2,2 a 2,3)		
	1-	$\frac{X = NH}{X = S} = 2.5$	stéréochimique	-
│ <u>`</u> × ,/~<		, , , , , , , , , , , , , , , , , , , ,		
	J		J	

- 26 -

-

i ii

í

.

. . 100 -

	_			
15 A	-	n=2 et 3 $X = Y = NH$	-	139 140
NH	-	n = 2 X = S ; Y=NH	-	139 140
	-	n = 2	·	138
Ň	1	X = Y = S	-	141
12,13,26,27-tétrahydrotétrabenzo (e,i,o,s)/1,4,11,14,17,187-tétra- thiadiazacycloeicosine	•	1,6à2,7	modèle stéréo- chimique	-
no No No No No No No No No No No No No No	La (III)	2,75 à 2,76	RX	178
	РЬ (І	I) 2,6 à 2,8	RX.2 Pb par ligand. Le Pb est légèrement hors du plan de	101

ին անդաններություն։ 1919 թ. անդանները հետությունը հետությունը հետոներությունը հետոներությունը հետոներությունը հետոներությունը։ 1919 թ. անդաններությունը հետոներությունը հետոներությունը հետոներությունը հետոներությունը հետոներությունը հետոնե

	₽Ъ (II)	2,6 à 2,8	RX.2 Pb par ligand. Le Pb est légèrement hors du plan de la TPymT	101
18	Mn (11)	-	Mn n'est pas lié à l'azote	102
	Co (II)	2,0 à 2,2	RX.	103
	Ni (II)	2,0 à 2,2	RX.	1D4 105
TPTZ				

.

Nous avons construit des représentations des ligands présentés tableau VI, à l'aide de modèles stéréochimiques éclatés (du type montré Figure 28) à l'échelle 3 cm pour 1 Å : les liaisons sont représentées par des bâtonnets cylindriques creux en plastique rigide, coupés au millimètre près, reliés entre eux par les atomes matérialisés à l'aide d'étoiles dont les branches imposent les angles classiques des liaisons chimiques. Ces modèles nous ont permis de mesurer les distances entre le centre de la cavité et les atomes donneurs d'azote de chaque ligand : la précision de cette détermination des distances entre le cation et les azotes, est meilleure que 0,05 Å si on les compare avec les structures résolues d'après les spectres de diffraction de rayons X.

Ainsi, on peut différencier les macrocycles dont la cavité est suffisamment grande pour y accueillir un cation actinide ou lanthanide trivalent (les ligands numéros 2, 4, 7, 9 à 12, 14 à 16 du tableau VI) de ceux manifestement trop petits qui ne peuvent complexer ces cations qu'en dehors de leur cavité(les ligands numéros 3, 5, 8, 13 du tableau VI) pouvant aller jusqu'à former un complexe "sandwich" (ligand numéro 1 du tableau VI).

Mais le problème de la stabilité de ces molécules (tableau VI) - y compris dans l'eau - est rarement abordé. Les macrocycles à imines conjuguées sont stables quand leur cavité est de la taille de celle de la phtalocyanine ou d'une porphyrine (ligands numéros 1 et 3 du tableau VI) ; les macrocycles analogues, mais dont la cavité est plus grande (ligands numéros 2 et 4 du tableau VI), sont dégradés par l'eau. Il reste donc à savoir, pour ces ligands que nous avons sélectionnés d'après la taille de leur site potentiel de complexation :

- 1. s'ils sont stables, en particulier en présence d'eau,
- 2. s'ils complexent effectivement les actinides trivalents,
- si cette complexation est sélective des actinides trivalents vis-à-vis des lanthanides.

Naturellement, seuls des essais expérimentaux permettraient de répondre définitivement à ces trois questions. Toutefois, en ce qui concerne le troisième point (la sélectivité), il ne semble pas, a priori, que l'"effet macrocyclique" soit une propriété prometteuse. En effet, compte tenu de l'origine de cet effet (§ I.1.3.a.), nous prévoyons un ÷

ŧ

accroissement notable de la constante de complexation de tous les métaux dont le rayon ionique est proche d'une valeur optimale, ce qui ne permet pas de différencier une série f par rapport à l'autre ; mais, au mieux de séparer un actinide et un lanthanide mélangés car de tailles équivalentes, du reste des lanthanides et actinides.

C'est pour cette raison que nous ne choisissons pas de macrocycle pour réaliser la séparation de groupesactinides/lanthanides.

Remarque

÷ŧ

Ceci n'exclut pas l'utilisation de macrocycles pour des séparations chimiques effectuées dans d'autres buts : par exemple, purifier un mélange de ses gros cations ; mais on utiliserait sans doute des macrocycles oxygénés tels des éthers couronnes qui sont d'ailleurs plus courants que les macrocycles azotés : les macrocycles de la taille des 15 couronnes-5 et 18 couronnes-6 / 165 / complexent effectivement les lanthanides et même l'uranium trivalent / 172, 173 /.

A titre indicatif la TPTZ, et un ligand analogue, la TPymT, sont représentés à la fin du tableau VI : comme le Pb(II) est sensiblement de la taille des Ln(III) et An(III), ces ligands doivent pouvoir complexer les ions trivalents des séries f, le cation se plaçant, comme le Pb(II), légèrement au-dessus du plan du ligand.

1.1.4. La TPTZ

Nous n'avons pas pu trouver, a priori, de moyen d'utiliser l'originalité de structure des macrocycles pour réaliser la séparation de groupes actinides trivalents/lanthanides. Autrement dit, pour ce type de séparation, nous préférons étudier des molécules analogues à celles déjà employées : la TITZ par exemple, dont la géométrie du site de complexation semble adaptée aux ions trivalents des séries f.

Elle présente certaines analogies avec l'ophen (Figure 3). Nous poursuivrons cette analyse bibliographique pour savoir si les particularités de la TPTZ :

. site de complexation tridentate,

. présence du noyau triazine,

. nombre important d'imines conjuguées,

peuvent justifier son choix pour améliorer ses performances par rapport à l'ophen. ï

La TPIZ est un réactif analytique utilisé pour le dosage du fer II. Elle est pratiquement insoluble dans l'eau à pH \geq 5.

I.I.4.a. Propriétés chimiques en solution aqueuse

* H⁺ - TPTZ

La TPTZ possède six fonctions pyridine susceptibles d'être basiques : trois pyridyles, trois sur le triazine. D'après la littérature, la TPTZ est une mono ou dibase : $pKa_1 = 3,10$; 3,53; 2,818 $\pm 0,002$; 3,27 ou 2,98 suivant les auteurs $/_{-}78$, 79, 80, 81 ou $82_{-}7$ et $pKa_2 = 2,73$; $2,75 \pm 0,25$ ou $2,82 /_{-}79$, 80 ou $82_{-}7$. Ces valeurs, en général obtenues à partir des variations du spectre ultraviolet de la TPTZ en fonction du pH, sont, comme on le voit, dispersées.

* Fer(11) - TPTZ

Le complexe Fe(TPTZ) $_2^{2^+}$ est bleu : $\varepsilon = 24$ 100 à 595 nm dans le nitrobenzène et $\varepsilon = 22$ 600 à 593 nm dans l'eau <u>/</u>83_7; d'autre part, log $\beta_2 = 10,2$; 12,4 ou 11,4 [±] 0,2 suivant les auteurs <u>/</u>78, 79 ou 82_7, ces valeurs sont dispersées. On dose le fer II <u>/</u>78-80, 82-91_7 par absorptiométrie dans l'eau ou après extraction de (FeTPTZ) (C10₄)₂ dans le nitrobenzène.

* Ru(111) - TPTZ

Le complexe Ru(III) (TPTZ) $_2^{3+}$ serait plus stable que Fe(II) (TPTZ) $_2^{2+}$; il se forme très lentement. Il pourrait s'agir de Ru(II). On dose Ru en chauffant pour accélérer la formation du complexe $\lfloor 92$, 93_7 dont l'oxydo-réduction a été étudiée $\lfloor 94$, 95_7.

* Co(11) TPTZ

La 'IPTZ complexe le cobalt(II) \angle 96, 97, 103 $_7$ ce qui permet de fixer le cobalt sur résine \angle 81 $_7$. Ce complexe est coloré : ε = 2 800 à 485 nanomètres dans le mélange eau-éthanol 10 %.

* <u>N.([11]</u> TPTZ

La TPTZ complexe également le nickel II / 98, 104_7.

- 31 -

£

* Dégradation de la TPTZ

En milieu trop acide, les ions H⁺ déplacent les ions métalliques de leur complexe avec la TPTZ et leur dosage absorptiométrique est impossible. Il existe également une limitation de ce dosage en milieu basique. Cette limitation a été interprétée par la destruction réversible ou irréversible du complexe, catalysée par certains ions tels Cu(II) \lfloor 99, 100, 109 $_{7}$, Ni(II) et Co(II) \lfloor 106, 107 $_{7}$, Fe(II) et Ru(II) \lfloor 91, 108 $_{7}$. Certains agents nucléophiles, (CN⁻, MeO⁻, EtO⁻, H₂O) en particulier les ions OH⁻, ont tendance à se fixer sur un carbone du noyau triazine de la TPTZ, situé en 1 de l'azote de la triazine liée au métal. Certains ions métalliques fav risent cette attaque \lfloor 91, 99, 100, 103, 106, 109 $_{7}$ réversible ou irréversible du ligand. Quand la TPTZ est détruite, on obtient de l'acide formique, de l'ammoniaque et un nouveau ligand (Figure 4). La fixation de OH⁻ sur la TPTZ a été mise en évidence par des études de cinétique de destruction de complexes en milieu basique / 89, 110 7.

b. s(2-pyridyl)carbonylamine

FIGURE 4 : PRODUIT DE DEGRADATION DE LA TPTZ

I.1.4.b. Composés solides

* Lanthanides (III) - TPTZ

Des nitrates, chlorures et perchlorates hydratés solides, de lanthanides de TPTZ ont été préparés <u>/</u>111, 112_7. La stoechiométrie lanthanide-TPTZ est 1:1, sauf dans le composé Eu $(ClO_4)_3$ TPTZ₃.

* Structure de composés solides

Dans le solide TPymT Pb₂(NO₃)₄, 2H₂O / 101_7, deux des trois sites de coordination du ligand TPymT sont liés au plomb. La stoechiométrie métal-TPymT est 1:1 dans le composé TPymTUO₂(NO₃)₂, 7 H₂O; alors qu'il y a plus d'un ion métallique par molécule de TPymT dans les composés TPymTPb₃Cl₆, 3 H₂O et (TPymT)₂Tl₇(NO₃)₇ / 101, 109_7.

Dans le composé H₃TPTZ (Mn(III)Cl₅)Cl.H₂O / 101_7, l'ion métallique n'est pas directement lié à la TPTZ dont les trois substituants pyridils sont protonés.

Dans le solide TPTZ (II_2O Co(II) Cl₂) $H_2 \cap_2 / 103_7$ la TPTZ est à la fois mono et tridentate ; alors qu'elle est tridentate dans le solide Ni(H_2O)₃ (TPTZHBr)Br₂. $H_2O / 104$, 105_7.

Ces études par diffraction des rayons X <u>/</u>101-105, 109_7 montrent que dans les solides, les molécules de TPTZ sont pratiquement planes, de plus, elles forment des plans parallèles ; le cation métallique peut se situer quelques dixièmes d'angström en dehors du plan du ligand. Quand il est volumineux <u>/</u>101_7 le noyau triazine et les substituants pyridils qui lui sont coordinés font généralement un angle de quelques degrés avec le plan de la triazine (Tableau VII). Cette souplesse de la TPTZ en diminuant les contraintes intramoléculaires stabilise les complexes formés.

Dans divers solvants plus ou moins acides, il a été montré, par RMN du proton, que la molécule de TPTZ est pratiquement plane, la configuration dessinée sur la figure 5 est la plus stable 2^{-115} .

I.1.4.c. Comparaison avec d'autres pyridines

La TPTZ présente, comme l'ophen, des fonctions pyridiniques ; on cherchera donc à vérifier si la sélectivité entre actinides et lanthanides, mise en évidence pour l'ophen, existe également pour la TPTZ. Toutefois, la présence du noyau triazine (dans la TPTZ) est originale : ÷

Composé	Distance moyenne azote-ion métallique pour les deux 'sites de coordination	Angle de rotation des substituants pyridyls (ou pyrinidyls) par rapport au plan de la triazine	Wéthode	Réf.
TPymTPb2003)4,2H20	2,73 Å	10,8 ° - 9.2	RX	101
	2,67 Å	4,2		
H3 TPTZ (MnCl ₅)Cl.H20 solide	Mn n'est pas coordiné sur H ₃ TPTZ 3 *	6,6 4,3 8,4	RX	102
Co2C14TPTZ.2H 20	2,09Å	< 4° à 5°	d'après RX	103
Source	non coordin t	38°	RX]
Ni (II 20)3 (TPTZHBr) Br2-H20		< 4° à 5°	d'après RX	105
solide		5°	RX	
TPTZ dans divers solvants		= 0° dans CCl4ct augmenté par protonation	RMN	115

TABLEAU VII : ANGLES ENTRE LE NOYAU TRIAZINE ET SES SUBSTITUANTS PVRIDINIQUES

- . la TPTZ est la seule molécule contenant la fonction triazine, stable dans l'eau,
- . alors que le pKa de la pyridine ou des substituants pyridils est généralement de 5, la TPTZ est moins basique,
- contrairement à la bipyridine et à la terpyridine, la TPTZ est préférentiellement plane et elle présente un site de complexation tridentate.

La TPTZ permet donc une extrapolation des études menées sur l'ophen.tout en ayant des propriétés originales. On peut notamment s'attendre à complexer les actinides en milieu plus acide qu'avec l'ophen.. La TPymT (Tableau VI) semble d'ailleurs aussi intéressante que la TPTZ ; mais c'est un réactif moins courant dont la synthèse présente de réelles difficultés $\underline{/}$ 109_7, c'est pourquoi nous ne l'avons pas étudié. ŝ

1.1.5. Conclusion : choix de la TPTZ

Nous avons vu que les macrocycles ne semblent pas, a priori, pouvoir séparer les ions trivalents des actinides, de ceux des lanthanides. Par conséquent, nous chercherons à améliorer les résultats prometteurs de l'orthophénantroline, en utilisant un ligand similaire, la TPTZ.

Les propriétés originales de la TPTZ :

- . un site de complexation assez peu rigide pour s'adapter à des ions de tailles différentes,
- . faible basicité,
- . site tridentate de complexation par l'azote,

en font un ligand potentiellement sélectif (§ I.1.1.3.c.) des actinides trivalents : sélectivité vis-à-vis des lanthanides et des ions H^{+} .

Nous avons donc choisi ce ligand.

ŝ

1.2. BASICITE DE LA TPTZ

Comme nous voulons réaliser une séparation chimique d'ions en solution dans de l'acide nitrique, nous devons connaître le comportement de la TPT2 dans ce milieu.

Les propriétés basiques de la TPTZ en solution aqueuse sont, on l'a vu, mal connues (§ I.1.3.a.). Nous allons dans ce qui suit revoir en détail l'interprétation des expériences faites par différents auteurs (§ I.1.3.a.) concernant les variations du spectre d'absorption ultraviolet de la TPTZ, en fonction du pH. Nous chercherons ensuite à confirmer par d'autres méthodes expérimentales, la nature des espèces en solution et les valeurs des pKa.

I.2.1. Variation du spectre d'absorption ultraviolet de la TPTZ en fonction du pH

I.2.1.a. <u>Résultats expérimentaux et interprétation</u> qualitative

Le spectre d'absorption de la TPTZ en solution aqueuse de pH \geq 4,5, présente un pic à 284 nm (ϵ_{284} = 38 000), un autre moins intense à 247 nm (ϵ_{247} = 25 000) et probablement un ou plusieurs autres au-delà de 220 nm (Figure 5a). En milieu plus acide (Figures 5), le pic à 284 nm augmente d'intensité et se déplace vers le visible ; celui à 247 nm diminue d'intensité sans se déplacer notablement. Ces variations spectrales montrent qu'il y a plus d'une espèce de TPTZ dans ce milieu.

A pH \ge 2,2 (Figure 5a) les points isobestiques à 279 nm et 230 nm montrent l'existence de deux espèces en solution : la TPTZ se transforme en une espèce protonnée de TPTZ quand le pH diminue.

En milieu plus acide (Figure 5b) (à $2,4 \le pH \le 0,80$)1'intersection des spectres en un nouveau point à 313 nm,révèle l'apparition d'une deuxième espèce protonnée de TPTZ. Alors qu'en milieu encore plus acide (Figure 5c), jusqu'à pH = 0, les spectres de la TPTZ ne montrent pas l'apparition de nouvelle espèce.

Si on admet, comme la plupart des auteurs (§ I.1.4.a.), que les trois espèces de TPTZ mises ainsi en évidence, sont TPTZ, HTPTZ⁺ et

FIGURES 5 : SPECTRES D'ABSORPTION DANS L'ULTRAVIOLET DE SOLUTIONS DE TPTZ A DIFFERENTS pH

 $I = 1 M(M, CL), T = 23 + 2°C, [TPT2]_{t} = 2 10^{-5} M, trajet optique = 1 cm$

- a. Laiscean isobestique quand pH≥2,22
- b. apparition d'un nouveau point d'intersection des spectres à 313 nm quand pH < 2,4 mettant en évidence une espèce supplémentaire de TPTZ

1

c. 1,53 ≤ pH ≤ 0 on ne met pas en évidence de nouvelle espèce de TPTZ

 H_2TPTZ^{2+} , on déduit pour les valeurs numériques des constantes d'acidité pKa₁ et pKa₂, les encadrements suivants :

$$3,2 \le pKa_1 \le 4,2$$
 (Figure 5a)
et $1,5 \le pKa_2 \le pKa_1$ (Figure 5b)

Un calcul d'optimisation est nécessaire pour préciser ces valeurs et valider l'hypothèse faite sur le nombre et la nature des espèces en solution.

I.2.1.b. Interprétation quantitative

Dans un premier temps, nous admettons, comme nous venons de le voir, que la TPTZ existe en solution sous les formes TPTZ, $HTPTZ^+$ et H_2TPTZ^{2+} .

Nous emploierons les notations suivantes :

. L pour TPT2, HL⁺ pour HIPT2⁺ et H₂L²⁺ pour H₂TPT2²⁺; . Co = [L]_t est la concentration totale de L; . $\alpha = \frac{[L]}{Co}$, $\beta = \frac{[HL^+]}{Co}$, $\gamma = \frac{[H_2L^{2+}]}{Co}$. $\varepsilon_L (\varepsilon_{HL}^+, \varepsilon_{H_2L}^{2+})$ l'absorptivité molaire de L(HL⁺, H₂L²⁺) . $A = \varepsilon_L$ &Co, où l est le trajet optique B = ε_{HL}^+ &Co C = $\varepsilon_{H_2L}^{2+}$ &Co . Y absorbance mesurée, d'un mélange de L, HL⁺ et H₂L²⁺.

Nous supposons, pur l'instant (§ I.2.1.a.), que les seuls équilibreschimiques sont :

$$HL^{+} + H^{+} \stackrel{2}{\leftarrow} H_{2}L^{2+}$$
 (2)

les constantes de ces équilibres s'écrivent :

$$Ka_{1} = \frac{[L][H^{+}]}{[HL^{+}]}$$
(3)

$$Ka_{2} = \frac{[HL^{+}][H^{+}]}{[H_{2}L^{2+}]}$$
(4)

Les spectres (Figure 5) permettent d'optimiser les proportions des espèces en solution à partir de la loi de Beer appliquée à la longueur d'onde λ_i pour une solution à pH_i:

$$Y_{ij} = \alpha_i A_j + \beta_i B_j + (1 - \alpha_i - \beta_i) C_j$$
(5)

Dans notre hypothèse, où n'existent que les équilibres (1) et (2), les expressions théoriques des proportions des espèces en solution en fonction du pH sont (annexe III.1) :

$$\alpha = \frac{1}{1 + \frac{[H^{+}]}{Ka_{1}} + \frac{[H^{+}]^{2}}{Ka_{1}Ka_{2}}}$$

$$\beta = \alpha \frac{[H^{+}]}{Ka_{1}}$$
(6)
(7)

Ces relations (6) et (7) permettent de vérifier l'hypothèse faite, équilibres (1) et (2), et de calculer pKa_1 et pKa_2 . Il est assez simple de le faire par régressions linéaires (voir annexe III.1)

$$\log \frac{\beta}{\alpha} = pKa_1 - pH$$
 (8)

$$\log \left(\frac{1-\alpha}{\beta}-1\right) = pKa_2 - pH$$
(9)

Il s'agit donc d'optimiser les paramètres pKa₁, pKa₂ et les absorbivités molaires non directement mesurables $\varepsilon_{\rm HL}^+$ et $\varepsilon_{\rm H_2L}^2$ ²⁺ (c'està-dire les coefficients B_i et C_i).

Nous avons effectué l'optimisation étape par étape afin de contrôler les valeurs prises par tous les paramètres qui interviennent explicitement ou implicitement dans les calculs :

- 39 -

 $B_{j} \text{ et } C_{j} \ge 0$ $0 \le \alpha_{i}, \beta_{i} \text{ et } \gamma_{i} \le 1$

On fixe des valeurs pKa[°]₁ et pKa[°]₂, on calcule alors a[°]₁ et β[°]₁ (égalités (6) et (7)), puis on optimise B_j et C_j par régression linéaire (équation (5)), puis a_i et β₁ par régression linéaire (équation (5) également). On trace alors les courbes représentatives des variations des logarithmes des rapports des espèces en solution (log $\frac{\beta}{\alpha}$ et log ($\frac{1-\alpha}{\beta}$ - 1)) en fonction du pH; on effectue des régressions linéaires dont les pentes (a₁ et a₂) sont théoriquement - 1 (équations (8) et (9) : c'est notre critère d'optimisation. On en déduit ainsi pKa₁ et pKa₂ par une méthode analogue à celle des triangles d'optimisation

Des valeurs numériques, pKa[°]₁ et pKa[°]₂, des pKa permettent de calculer (optimiser) les patamètres physicochimiques suivants : B_j représentant l'absorbance molaire de HTPT2⁺ ; a_i, B_i et _{Yi} les proportions des espèces TPT2, HTPT2⁺ et H₂TPT2²⁺. Nous indiquons quand ce calcul conduit à des valeurs inacceptables pour :

> • B_j et • α_i , B_i ou γ_i

On vérifie le modèle proposé en calculant le nombre $-a_1$ de protons échangés entre TPTZ et HTPTZ⁺ et $-a_2$ entre HTPTZ⁺ et $H_2^{TPTZ^{2+}}$. Si ce nombre est manijestement différent de 1, nous l'indiguons par :

θ pour a,

et o pour az

Un optimum sur a1, et donc pKa1, à pKa2 fixé est indiqué pan ∞, et un optimum de pKa2 à pKa1 fixé par §.

Valeurs données par la littérature (§ 1.1.4.a.)

FIGURE 6 : VALEURS DES CONSTANTES D'ACIDITE, COMPATIBLES AVEC LES MESURES D'ABSORBANCE.

RESULTATS

Quelle que soit la méthode d'optimisation qui a permis d'obtenir un couple de valeurs numériques (pKa_1, pKa_2) on peut, à partir de ces données, recalculer les paramètres physico-chimiques qui sont à l'origine explicitement de la détermination des pKa, c'est-à-dire les absorbances molaires, les proportions des espèces en solution, le nombre de H[°] échangés(voir figure 6).

Autour des valeurs optimales calculées :

$$pKa_1 = 3, 3 \pm 0, 2$$

 $pKa_2 = 1, 8 \pm 0, 3$

on constate (figure 6) que, pour la série de points expérimentaux présentés i :i (figure 5), le calcul de ces paramètres physico-chimiques conduit presque toujours à des valeurs physiquement impossibles. Ceci est dû essentiellement à la faiblesse des variations spectrales en fonction du pH et à la précision de ces mesures.

Autrement dit, bien que ces valeurs numériques rendent bien compte des résultats expérimentaux (figure 7), nous ne pouvons affirmer que l'autres couples de valeurs numériques de pKa₁ et pKa₂ ne sont pas possibles. Nous avions déjà noté (§.I.1.4.a.) une importante dispersion des résultats obtenus par cette méthode par divers auteurs : nos résultats ne confirment pas ceux proposés par un auteur en particulier, ils s'inscrivent dans la dispersion générale.

D'autre part on peut rendre compte des résultats expérimentaux à l'artir d'autres réactions chimiques que celles généralement admises ('actions (1) et (2)); en particulier en faisant intervenir une dimérisation de la TPTZ (tableau VII) en concentration totale fixée. Pour mettre en évidence des espèces condensées de TPTZ, nous avons alors fait varier la concentration totale en TPTZ dans le plus grand domaine possible compte-tenu de la solubilité de TPTZ et des absorbt vités molaires (trajet optique 10 cm) soit :

 $2.10^{-7} \leq [TPTZ]_t \leq 4 \ 10^{-2} M \text{ suivant le pH}$

Nous n'avons pas mis en évidence d'espèces condensées de TPT2 par cette méthode. ÷

Réaction chimique	Résultat du calcul
$L + H^{\dagger} \ddagger HL^{\dagger}$ $HL^{\dagger} + H^{\dagger} \ddagger H_2 L^{2+}$	On ne peut conclure (voir figure 6)
$2L + H^{+} \ddagger HL_{2}^{+}$ $HL_{2}^{+} + H^{+} \ddagger H_{2}L_{2}^{2+}$	
$L_2 + H^+ \ddagger HL_2^+$	Pour une série de mesures où la concentration totale en TPTZ (L) est fixe, on trouve des résultats
$\frac{HL_2^2 + H^2}{2L_2 + H^2} \neq \frac{HL_2^2}{2L_2}$	numériques (voir annexe III.1)ren- dant compte des résultats expéri- mentaux, mais avec les mêmes réser-
$\frac{HL_{2} + H^{+}}{2L + H^{+}} \stackrel{?}{=} \frac{HL_{2}^{+}}{H_{2}^{+}}$ $2HL_{2}^{+} + H^{+} \stackrel{?}{=} H_{3}L_{4}^{3+}$	premier modèle. Toutefois, tous ces modèles sont infirmés expéri- mentalement par l'étude des varia-
$L_{2} + H^{+} \ddagger HL_{2}^{+}$ $HL_{2}^{+} + H^{+} \ddagger 2HL^{+}$	tions spectrales de la TPTZ en fonction de sa concentration à pH fixé.
$L_2 + H^+ \ddagger HL_2^+$ $2HL_2^+ + H^+ \ddagger H_3L_4^{3+}$	

TABLEAU VIII: MODELES POUVANT RENDRE COMPTE DE LA PROTONATION DE LA TPTZ

÷ parts of a little state

and the first strategies as a solution of the second
 \mathbb{S}

FIGURE 7 : PROPORTION ET CONTRIBUTION DE CHAQUE ESPECE DE TPTZ A L'ABSORBANCE TOTALE. Courbes calculées avec pKa₁ = 3,3 et pKa₂ = 1,8

5

I.2.1.c. <u>Discussion sur les mesures</u> d'absorbance et les méthodes d'exploitation des résultats

Une analyse approfondie de l'interprétation quantitative des variations spectrales de la TPTZ en fonction du pH, montre que cette méthode ne permet pas de trouver, avec certitude, les valeurs numériques des pKa de la TPTZ : ceci est dû au manque de précision de la méthode qui, toutefois, nous permet de conclure à l'existence des espèces TPTZ, HTPTZ⁺ et H₂TPTZ²⁺ en solution.

Nous avons donc prouvé la nature des espèces en solution et expliqué la dispersion des résultats de différents auteurs, déjà signalée (§.I.1.4.a.), mais sans pouvoir résoudre ce dernier problème par cette méthode expérimentale. Nous avons donc cherché à utiliser d'autres méthodes expérimentales.

ţ

1.2.2. Partage de la TPTZ entre le décanol et une phase aqueuse de pH variable

I.2.2.a. Choix du décanol

Quand sa concentration est suffisamment faible pour qu'on puisse la confondre avec son activité, le partage d'une molécule entre deux solvants non miscibles, satisfait à la loi thermodynamique :

$$\mathbf{D}_{\mathbf{0}}^{\mathbf{L}} = \frac{\left[\overline{\mathbf{L}}\right]}{\left[\mathbf{L}\right]} \qquad [1]$$

où D_{L}^{L} est la constante de partage ; les espèces surlignées sont celles présentes dans l'un des deux solvants : le solvant organique, si l'autre est aqueux.

On peut séparer les deux phases et doser L dans chacume : $[\,\overline{L}\,]_t$ et $[\,L\,]_{L,a0}$; on mesure ainsi :

$$D^{L} = \frac{\left[\overline{L}\right]_{t}}{\left[L\right]_{t,aq}}$$
 [2]

qui permet d'atteindre [L] dans la phase aqueuse si les réactions chimiques de L dans l'autre phase sont connues, ou l'inverse.

Ainsi, la protonation de la TPTZ en phase aqueuse sera étudiée à l'aide d'un solvant qui :

- . sera non miscible à l'eau
- permettra le dosage de la TPTZ (donc, si possible, n'absorbera pas la lumière ultraviolette vers 290 nm, ce qui exclue les solvants aromatiques),
- solubilisera la TPTZ; nous avons donc mesuré la solubilité de la TPTZ dans divers solvants (Tableau IX).

Le décanol est le solvant qui répond le mieux à ces trois critères : nous l'avons donc choisi.

Remarques : Les résultats du tableau IX montrent que :

 la solubilité de la TPTZ ne dépend pas de façon univoque de la constante diélectrique du solvant dans lequel on la mesure.

2) la TPTZ est très soluble dans le méthanol et de façon générale les alcools, ainsi que le nitrobenzène, elle est un peu soluble dans des solvants aromatiques de faible constante diélectrique ; les phénomènes responsables de la solubilisation de la TPTZ sont donc : la solvatation de ses azotes et, de façon secondaire, des interactions π - π entre les noyaux aromatiques de la TPTZ et du solvant quand ils existent.

Solvant	Solubilité (mole.1 ^{*1})	Constante diélectrique
eau (KC1 1 M) dodecane t-butylbenzène xylène toluène benzène nitrobenzène	$2,03 \ 10^{-5}$ $1,2 \ 10^{-5}$ $3,1 \ 10^{-4}$ $1,7 \ 10^{-3}$ $2,8 \ 10^{-3}$ $6,5 \ 10^{-3}$ $7,5 \ 10^{-2}$	79 2,0 2,3 35
méthanol éthanol éthanol 95° propanol-1 propanol-2 butanol-1 pentanol-3 trimcthyl-2,2,4 alcool isoamylique octanol-1 décanol-1 alcool benzylique phenol*butyl-2 methyl-6	0,34 0,071 0,087 0,099 0,027 0,095 0,0052 0,16 0,082 0,072 0,11 0,044	33 24 20 18 17 15 10 9,8 13

TABLEAU IX : SOLUBILITE DE LA TPTZ DANS DIVERS SOLVANTS A 23 ± 2°C

£

I.2.2.b. Comportement de la TPTZ dans le décanol

Le coefficient de partage de la TPTZ entre le décanolet une phase aqueuse de pH 5,3 ± 0,5 est indépendant de la concentration de TPTZ : pour $\begin{bmatrix} TPTZ \\ t \le 1,2 \end{bmatrix} t \le 1,2 \ 10^{-2} M$.

$$D_{o}^{TPTZ} = 82 \pm 8$$

La TPTZ ne se polymérise donc pas (voir annexe III,2).

<u>Remarque</u> : pour que les mesures soient reproductibles, en particulier à faible concentration en TPTZ, il faut prééquilibrer plusieurs fois le décanol avec des phases aqueuses de même composition que celle étudiée.

I.2.2.c. Interprétation du partage de la TPTZ, par les constantes d'hydrophobie de fragments

R.F.REKKER [153_7 a mis au point une méthode semi-empirique pour prévoir le coefficient de partage d'une molécule à partir de constantes tabulées, f_i, que nous appellerons constantes d'hydrophobie de fragments (hydrophobic fragmental constants). A chaque fragment, i, de molécule (un fragment est un atome ou un groupement d'atomes), dans un solvant donné, correspond une constante, f_i, qui permet de calculer :

$$\log D_0^{L} = \sum_i f_i + Q_M \sum_i l_j$$
(3)

où C_M est caractéristique du solvant et l_j est attribué à l'aide de certaines règles, à chaque effet intramoléculaire entre les fragments tels qu'ils ont été choisis pour appliquer la relation (3).

D'autre part, REKKER essaie de déterminer une règle pour déduire le coefficient de partage dans un solvant, du coefficient de partage dans un autre solvant ; ainsi, les constantes d'hydrophobie de fragments devraient être pratiquement identiques dans le décanol et l'octanol : nous utilisons les valeurs tabulées dans l'octanol.

L'application de la formule (3) à la TPTZ est délicate, car f_{triazine} n'est pas tabulé. Nous commençons par appliquer cette formule à la bipyridine (bipy) (figure 3) qui est une molécule plus simple que la TPTZ, afin de mesurer une valeur expérimentale pouvant contribuer au calcul de f_{triazine}.

D'après REKKER, on doit écrire [153 7 :

 $\log p_o^{bipy} = 2 f_{C_5H_4N} + f_{C^\circ} = 1,0S_2 + 0,3I_4 = 1,37$ Nous avons mesuré dans le décanol :

 $\log D_0^{bipy} = 1,51 \pm 0,18$

- 46 -

La valeur calculée est donc trop faible, comme c'est le cas pour de nombreuses molécules possédant des cycles aromatiques susceptibles d'être conjugués [153] . Nous attribuons cette différence de 0,14 à l'interaction entre les doublets libres des azotes des deux pyridyls de la bipy, ce qui diminue leur électronégativité et les rend donc moins hydrophiles : cet effet se traduit aussi par la moindre basicité de la bipy (pKa = 4,5) par rapport à la pyridine (pKa = 5,0 à 5,5).

En suivant le même principe :

$$\log D_0^{\text{TPTZ}} \leq f_{C_3N_3} + 3 f_{C^\circ} + 3 \times 0,14 \approx f_{C_3N_3} + 1,36_2$$

ainsi, les effets intramoléculaires de la TPTZ (résonance des cycles aromatiques et interactions des azotes de ces cycles entre eux) sont plus importants que dans la bipy car la TPTZ est :

- . plus rigide que la bipy [115],
- . nettement moins basique que la bipy (de 1 à 2 unités pH).

On a supposé :

$${}^{t}C_{3}N_{3} = {}^{3}f_{C}C_{7} + {}^{3}f_{N_{7}} + {}^{s}$$

et s = 3 f_{co} par analogie à [153 p.94 et 95].

Soit log D₀^{TPTZ}
$$\lesssim$$
 1,72

la valeur mesurée :

•

$$\log D_0^{\text{TPTZ}} = 1,91$$

confirme les interprétations des effets intramoléculaires dans la TPTZ, utilisés pour ce calcul : les imines de la TPTZ sont conjuguées ce qui diminue sa polarité (augmente son hydrophobie), rend la molécule plus rigide et plane, diminue sa basicité.

REMARQUES SUR LES CONSTANTES D'HYDROPHOBIE DE FRAGMENTS

* Remarque 1.

REKKER suppose que les constantes fi sont de la forme :

$$f_{i} = n_{i} C_{M}$$
 (4)

où n_i est entier; dans la mesure où C_M , appelée constante magique, est du même ordre de grandeur que l'incertitude sur log D_0 mesuré par des auteurs différents, nous n'utiliserons pas cette relation (4) ni celles qui en découlent.

* Remarque 2.

REKKER interprète la relation précédente (4) comme rendant compte du nombre $(n_i^?)$ de molécules de solvatation q!il faut déplacer pour passer d'un solvant à l'autre. D'autre part, nous avons été frappés par l'analogie entre le premier terme de la relation (3) et la loi d'action de masse. Ainsi, si on suppose qu'une molécule AB peut être composée de fragments A et B tels que la solvatation de A ou B n'a pas d'influence sur la liaison A-B, on est tenté de décomposer :

AB
$$\ddagger$$
 \overline{AB}
en AB \ddagger (A+B)
(A \ddagger A)
(B \ddagger B)
(A + B) \ddagger AB

alors :

$$D_{o}^{AB} = \frac{k_{\overline{AB}}}{k} D_{o}^{A} D_{o}^{B}$$
(5)

où

$$k_{\overline{AB}} = \frac{\left[\overline{AB}\right]}{\left[\overline{A}\right]\left[\overline{B}\right]} \quad \text{et} \quad k_{AB} = \frac{\left[AB\right]}{\left[A\right]\left[B\right]}$$
bese faite k = k - (6)

avec 1'hypothèse faite $k_{AB} \approx k_{\overline{AB}}$

alors
$$f_{A^{\mp}} \log D_{O}^{A}$$
 et $f_{B^{\pm}} \log D_{O}^{B}$

permet de retrouver la relation (3), dans le cas particulier où il n'y a pas d'effet intramoléculaire, à partir de (5). Quand l'approximation (6) n'est pas vérifiée, les relations (5) et (5) sont identiques et :

$$\log \frac{k_{\overline{AB}}}{k_{AB}} = C_M \Sigma_j \mathfrak{l}_j$$

I.2.2.d. Protonation de la TPTZ en phase aqueuse

Le manque de reproductibilité des mesures signalé (§ 1.2.2.b.) en milieu neutre n'a pas lieu en milieu acide.

Le partage de la TPTZ entre une phase aqueuse et le décanol (Figure 8) ne dépend pas de la concentration en TPTZ : c'est une confirmation (§ I.2.2.b.). A pH < 2, la courbe représentative des variations de log D^{TPTZ} en fonction du pH, est une droite de pente 2 (figure 8), l'espèce majoritaire en phase aqueuse est donc H_2TPTZ^{2+} comme le montre l'équation 10.

 $T = 23 - 2^{\circ}C$; I = IM (KC1,HC1)

Courbe théorique tracée pour $D_0 = 82$; pKa₁ = 3,8 et pKa₂ = 2,7

,[נופו]	mole.1 ⁻¹
0,10	с
1,20 10 ⁻²	
1,20 10 ⁻³	+
2,06 10 ⁻³	x
1,20 10 ⁻⁴	•

- 49 -

Si TPTZ est en phase aqueuse sous forme HTPTZ⁺ et $\rm H_2TPTZ^{2+}$, l'expression théorique de $\rm D^{TPTZ}$ est :

$$\log D^{L} = \log D_{0}^{L} - \log \left(1 + \frac{[H^{+}]}{Ka_{1}} + \frac{[H^{+}]^{2}}{Ka_{1} Ka_{2}}\right)$$
(7)

0.000

Dans le cas où le milieu est suffisamment acide pour que

$$[L] < [HL^{+}] \ll [H_2 L^{2+}]$$
(8)

c'est-à-dire que le pH est assez faible pour que

en :

$$1 < \frac{[H^+]}{Ka_1} \ll \frac{[H^+]^2}{Ka_1} \frac{Ka_1}{Ka_1}$$
(9)

Le report de cette approximation (9) dans (7) la simplifie

$$\log D^{L} \approx \log D_{0}^{L} - pKa_{1} - pKa_{2} + 2 pH$$
(10)

La façon d'optimiser les valeurs de pKa₁ et pKa₂ à partir des résultats expérimentaux est indiquée en l'annexe III.3.

1.2.3. Variations de la solubilité de la TPTZ, en fonction du pH.

La solubilité de la TPTZ dans l'eau est limitée par la solubilité, s₀, de l'espèce neutre. Nous n'avons pas observé de précipité TPTZ(HX)_n pour $X^{-} = Cl^{-}$ ou NO_{3}^{-} (ce qui n'est plus le cas en milieu perchlorique).

D'après les résultats précédents, la solubilité totale, s, de la TPTZ est :

$$s = s_0 \left(1 + \frac{\left[H^+\right]}{Ka_1} + \frac{\left[H^+\right]^2}{Ka_1 - Ka_2}\right)$$
 (1)

La dissolution du solide TPTZ, jusqu'à saturation dans une solution où $[H^+]_{initial} = Co, modifie le pH; en fin de dissolution :$

$$\left[H^{+}\right] = \frac{\left(1 + \frac{s_{0}}{Ka_{1}}\right)^{2} + \frac{8 Co so'}{Ka_{1} Ka_{2}} - (1 + \frac{s_{0}}{Ka_{1}})}{\frac{4 s_{0}}{Ka_{1} Ka_{2}}}$$
(2)

Le nombre n, de moles de TPTZ dissoutes par mole de H est :

$$n = \frac{s}{Co} = \frac{s}{[H^+] + [HL^+] + 2[H_2L^{2+}]}$$
(3)

$$[HL^{+}] = s_0 \frac{[H^{+}]}{Ka_1}$$
(4)

et
$$[H_2 L^{2^+}] = s_0 \frac{[H_L^+]}{Ka_2}$$
 (5)

Nous allons vérifier si les valeurs de pKa₁ et pKa₂ trouvées précédemment correspondent aux prévisions sur la solubilité de la TPT2, (1) (2) et (3). Il faut, en premier lieu, mesurer s_o.

I.2.3.a. Solubilité en milieu neutre

Dans des solutions aqueuses de force ionique 1M (KCl) à 20 $\stackrel{*}{-}$ 1°C et 25 $\stackrel{*}{-}$ 1°C, pH > 5,5 ; la TPTZ est dissoute soit à partir du solide, soit par neutralisation d'une solution acide. La TPTZ en solution est dosée par absorptiométrie dans l'ultraviolet.

On trouve (Figure 9) :

σù

FIGURE 9 : LOI DE BEER POUR LA TPTZ EN MILIEU NEUTRE

Remarques :

- Par neutralisation de solutions acides de TPTZ on obtient facilement, en quelques jours, des monocristaux blancs en forme d'aiguilles qui peuvent s'agglutiner en étoiles.
- 2. Aussi bien par dissolution que par précipitation, on observe une solubilité de TPTZ supérieure à s_o, dans les solutions fraichement préparées (presque jusqu'à 10⁻⁴ M). Ce phénomène est à rapprocher de l'existence de plusieurs formes hydratées de TPTZ solide / 109, 113, 114 /. En effet, si la solubilité du solide incomplètement hydraté est supérieure à celle du solide hydraté, le solide incomplètement hydraté se dissoudrait avant son hydratation complète en phase solide, puis le solide complètement hydraté précipiterait lentement à partir de la solution sursaturée. Les équilibres solides – solution que nous avons étudiés sont donc ceux où le solide est TFTZ hydraté.

I.2.3.b. Solubilité en milieu acide

Dans la solution contenant initialement des ions H^{\dagger} à la concentration Co, de la TPTZ solide est dissoute pour vérifier les constantes d'acidité mesurées précédemment (1), (2) et (3).

On constate (Figures 10) qu'à pH < 3, la solubilité de la TPTZ (Figure 10a), le nombre de moles de TPTZ dissoutes par mole de H⁺ introduite (Figure 10b) et le pH final (Figure 10c) sont supérieurs aux prévisions faites (1), (2) et (3) en supposant que les seules espèces en solution sont TPTZ, HTPTZ⁺ et H₂TPTZ²⁺. Il se forme donc de nouvelles espèces solubles de TPTZ ; ces espèces contiennent des ions H⁺ (Figure 10c); leur formule est H_mTPTZ^{m+} où, semble-t-il, $\frac{m}{n} \cong 1$ (équation 11 et figure 10d) et m \cong 3 à 4 (figure 10a et équation 16).

En effet si on définit la charge formelle par :

charge formelle = $\frac{\sum_{m} m [espèce de TPTZ de charge m]}{[TPTZ]_{t}}$ (6)

la charge formelle de la TPTZ est :

charge =
$$\frac{\sum_{m,n} m[H_m(TPTZ)_n^{m+}]}{\sum_{m,n} n[H_m(TPTZ)_n^{m+}]}$$
(7)

On peut déduire cette charge des valeurs expérimentales mesurées c'est-à-dire : la solubilité, s_{TPTZ}, de la TPTZ, le pH et la concentration $[H^{\dagger}]_{initiale}$ de H^{\dagger} introduite pour solubiliser la TPTZ.

Le bilan de H⁺ s'écrit en effet :

$$[H^{+}]_{initial} = [H^{+}] + \sum_{m,n} m[H_{m}(TPTZ)_{n}^{m+}]$$
(8)

en divisant cette équation par :

$$s_{TPTZ} = \sum_{n,m} n[H_m(TPTZ)_n^{m+1}]$$
(9)

et en la reportant dans (7), il vient :

charge =
$$\frac{\left[H^{+}\right]_{\text{initial}} - 10^{-\text{pH}}}{\text{s}_{\text{TPTZ}}}$$
(10)

Nous obtenons ainsi les points expérimentaux de la figure 10d. L'équation (7) nous donne la courbe théorique :

- dans le cas où les seules espèces solubles sont L, HL⁺ et H₂L²⁺ en reportant (2), (4), (5) nous avons tracé la courbe théorique de la figure 10d qui, comme nous l'avons dit plus haut, ne rend pas compte des résultats expérimentaux ;
- pour des conditions de pH où une espèce $H_m(TPTZ)_n^{m+}$ est majoritaire l'équation (7) se simplifie en :

charge
$$\approx \frac{m[H_m(TPTZ)_n^{m^+}]}{n[H_m(TPTZ)_n^{m^+}]} = \frac{m}{n}$$
 (11)

La figure 10d montre ainsi que pour 3 > pH > 2,2 ; $\frac{m}{n} \approx 1$.

Nous allons montrer maintenant comment les mesures de s_{TPTZ} à différents pH (figure 10a) permettent de déterminer m. L'approximation selon laquelle H_m TPTPZ^{m+}_n est majoritaire simplifie l'équation (9) en :

- 53 -

FIGURES 10 : SOLUBILITE DE LA TPTZ EN MILIEU ACIDE

I = IN(HXCl], T = 23 [±] 2°C. Les courbes théoriques sont tracées en supposant que les seules espèces en solution sont TPT2, HTPT2⁺ et H_2 TPT2²⁺ avec pKa₁ = 3,8 et pKa₂ = 2,7.

$$s_{TPTZ} \approx n[H_m(TPTZ)_n^{m^*}]$$
(12)

la réaction de formation de cette espèce,

$$m H^{+} + n TPTZ \rightleftharpoons H_{m} (TPTZ)_{n}^{m+}$$
(13)

ياليا والموالية والموالية والموالية والمناقب والمحالة والمالية والموالية والموالية والموالية والموالية والمراجعة والمراجع

a pour constante d'équilibre :

$$k = \frac{[H_{m}(TPTZ)_{n}^{m+}]}{[H^{+}]^{m}[TPTZ]^{n}}$$
(14)

En présence de solide [TPT2] = s (15) en reportant (14) et (15) dans (12), on déduit :

$$\log s_{TPTZ} \approx n \log s_0 + \log n k - m p H$$
 (16)

La pente de la courbe expérimentale (figure 10a) représentative des variations de log s_{TPTZ} en fonction du pH est égale à - π ; donc 3 \leq m \leq 4 (figure 10a).

1.2.4. Discussion sur la basicité de la TPTZ

Par l'étude du partage de la TPTZ entre le décanol et une phase aqueuse de pH variable, nous avons montré qu'en solution diluée, existent les trois espèces TPTZ, $HIPTZ^{+}$ et H_2TPTZ^{-2+} ; ce qui confirme les conclusions tirées des variations spectrales de la TPTZ en fonction du pH. Ce résultat, sans être nouveau, n'avait jamais été prouvé ; un doute existait car les différents auteurs n'arrivent pas à se mettre d'accord sur les valeurs des pKa déduites des variations spectrales de la TPTZ. Nous avons montré que cette méthode manque simplement de précision pour permettre l'optimisation de tous les paramètres qui interviennent dans son exploitation numérique.

Les trois paramètres :

$$D_0 = 82$$
; pKa₁ = 3,8 $\stackrel{+}{-}$ 0,2 et pKa₂ = 2,7 $\stackrel{+}{-}$ 0,3

rendent compte des résultats d'extraction de la TPTZ dans le décanol.

- 56 -

Des difficultés expérimentales (annexe II) ne nous permettent pas de mesurer D_0 avec certitude. Par conséquent les valeurs des pKa sont relatives à D_0 et non absolues. Nous disposons toutefois d'une bonne estimation des pKa.

Des espèces condensées de TPTZ de formules $(HTPTZ^+)_{3 \ a \ 4}$ se forment quand la concentration totale en TFTZ est suffisamment importante (à partir de 2.10⁻² M et pH < 2 à 5). De telles espèces n'ont jamais été envisagées dans la littérature.

Les basicités de la pyridine ($pKa_1 = 5 a 5,5 d'après / 6$), de la bipyridine ($pKa_1 = 4,5 d'après / 6 /$) et de la TPTZ varient dans l'ordre pyridine > bipyridine > TPTZ, ordre qui correspond à la diminution de l'électronégativité des azotes, consécutive à l'augmentation de la délocalisation des électrons entre les cycles aromatiques. ŝ

1.3. COMPLEXATION DE LANTHANIDES ET DE L'AMERICIUM TRIVALENTS PAR LA TPTZ

L'étude de la complexation des ions trivalents des séries f, per rettra de savoir si, en solution aqueuse, la TPTZ est un réactif sélectif des ions trivalents de la série 5f par rapport à ceux de la série 4f et de mesurer cette sélectivité par le log du rapport des constantes de complexation.

1.3.1. Complexation en solution aqueuse

On étudiera la complexation par les mêmes méthodes expérimentales que la protonation (où H^{+} est formellement remplacé par Ln^{3+}) : variations du spectre d'absorption ultraviolet de la TPTZ en fonction de pln (pln = - log [Ln^{3+}]) et partage de la TPTZ entre le décanol et des phases aqueuses, en fonction de pln(ln = lanthanide).

I.3.1.a. Variations du spectre d'absorption de la TPTZ en fonction de la concentration en lanthanides

Nous avons enregistré les spectres d'absorption de la TPTZ dans des solutions de néodyme (figure 11) ; ils se coupent en un point isobestique. Ce qui montre qu'il n'y a qu'un complexe en solution. L'interprétation quantitative des résultats n. présente pas les difficultés rencontrées pour exploiter les variations spectrales de la TPTZ en fonction du pH (§ I.2.2.d.). Nous avons mis en évidence la formation de NdTPTZ⁵⁺ et mesuré la constante de complexation (tableau X).

Nous avons confirmé, par cette méthode, que les éléments La, Nd, Eu et Lu, représentatifs de la série des lanthanides, forment tous le même complexe Ln TPTZ^{3^+} et nous avons mesuré les constantes de comnlexation (tableau X).

I.3.1.b. Partage de la TPTZ entre le décanol et des solutions aqueusesde lanthanides

Les résultats sur la complexation des lanthanides en solution aqueuse par la TPTZ (§ I.3.1.a.), obtenus par absorbtiométrie, sont véririés par la méthode de partage déjà utilisée (§ I.2.2.) où c'est l'ion Ln^{3+} (et non H⁺) qui retient la TPTZ en phase aqueuse sous forme de complexe chargé. La formation des complexes LnTPT2³⁺ est confirmée pour des concentrations en lanthanide inférieures à 0,1 M (figure 12). Les constantes de complexation mesurées par cette méthode (tableau X) sont en accord avec les mesures précédentes.

Ę

Remarque

En milieu plus concentré en lanthanide, la quantité de TPTZ en phase aqueuse est inférieure aux prévisions théoriques. Pour des concentrations en lanthanides supérieures à 1 M, la TPTZ se dégrade; des produits de dégradation contenant des cycles aromatiques, sont extraits dans la phase organique. Il est donc possible que cette dégradation soit précédée par la formation de Ln_2 TPTZ⁶⁺ (voir Annexe II).

FIGURE 12 : PARTAGE DE LA TPTZ ENTRE LE DECANOL ET DES SOLUTIONS AQUEUSES DE LANTHANIDES

T = 23 $\stackrel{+}{-}$ 2°C ; I = 1 M (KCL) pour [Ln] $t \le 0,33$ M courbes théoriques tracées avec $D_0^{TPTZ} = 82$, log $B_1^{Nd} = 2,81$

÷

I.3.1.c. L'américium trivalent

Les phénomènes de radiolyse et l'absorption de la lumière ultra-violette par l'Am (III) rendent impossible l'étude de sa complexation par la méthode absorptiométrique utilisée pour les lanthanides (§.I.3.1.a.). Par contre, la méthode de partage de la TPTZ (§.I.3.1.b) peut être transposée ; le mode opératoire (voir annexel) a été adapté aux contraintes imposées par la radioactivité de ²⁴¹Am.

Pour une concentration en américium inférieure à 10^{-3} M, le complexe AmTPTZ³⁺ se forme, nous avons mesuré :

$$\log \beta_1^{Am} = 4,22 \pm 0,17$$

ţ
* Résumé des résultats

En solution aqueuse, le complexe MTPTZ³⁺ se forme pour les ions des séries f. Les constantes de stabilité (Table:u X et figure 13) varient d'un facteur 20 environ dans la série des lanthanides avec un maximum pour le samarium.

Ce maximum de stabilité ne correspond pas au fait que la taille de l'ion Sm³⁺ serait telle qu'il pourrait se situer avec un minimum de contraintes dans le plan du site tridentale de complexation de la TPTZ, car tous les ions des séries f sont trop gros pour permettre une telle géométrie (tableauVI). Les cations doivent donc se situer en dehors du plan de la TPTZ, entraînant une légère déformation du ligand comme, par exemple, avec le plomb(II)/_101_7. Les variations de la stabilité du complexe 1:1 de certains macrocycles oxygénés, tels les 12-éther couronne 4 et 15-éther couronne 5, à l'intérieur des lanthanides, ont même allure /_165_7 qu'avec la TPTZ. Or, dans ces métallomacrocycles, le cation métallique est également en dehors du plan du ligand. L'origine exacte de ce comportement inhabituel dans la série des lanthanides n'a pu être déterminée /_165_7. II s'agit sans doute d'une compétition entre l'optimisation de la TPTZ qui est loin d'être complètement rigide (tableau VII).

Le comportement de l'américium trivalent vis-à-vis de la TPTZ est analogue à celui des lanthanides ; le complexe AmTPTZ^{3^+} est plus stable que les complexes LnTPTZ^{3^+} (tableau X).

* <u>Comparaison de la sélectivité de la TPTZ avcc celle d'autres ligands</u> <u>azotés</u>

La TPTZ est de loin le ligand azoté le plus sélectif de l'américium vis-à-vis des ions H^{+} (tableau XI). C'est aussi le ligand azoté qui donne le complexe AmL³⁺ le plus stable. Ce résultat justifie bien le choix de la TPTZ comme réactif sélectif pouvant réaliser la séparation de groupes entre les ions trivalents des actinides et des lanthanides en solution aqueuse acide.

- 61 -

$\frac{TABLEAU \ X}{AVEC \ DES \ LANTHAN 1 DES \ ET \ L'AMERICIUM \ TRIVALENT.} : CONSTANTES DE STABILITE, BJ, DES COMPLEXES DE TPTZ AVEC DES LANTHAN 1 DES ET L'AMERICIUM \ TRIVALENT.$

1 = 1 M (KCL)

T = 23 ⁺ 2°C

2

	log β_1 mesuré par 2 méthodes :				
	Partage	Absorptiométrie			
La	2,23 ± 0,15	2,3 ± 0,4			
Pr	3,16 ± 0,15				
Nd	2,81 ± 0,23	2,38 ± 0,19			
Sm	3,35 ± 0,09				
Eu	3,11 ± 0,12	3,16 ± 0,22			
Gd	3,00 ± 0,13				
Ть	2,50 [±] 0,23				
Dy	2,43 [±] 0,05				
Но	2,43 ± 0,25				
Er	2,03 ± 0,04				
Tm	2,00 ± 0,05				
Yb	2,09 ± 0,18				
Lu		2,3 - 0,4			
Am	4,22 ± 0,17				

La sélectivité de la TPTZ pour l'uméricium vis-à-vis des lanthanides est égale à celle de l'orthophénantroline (ophen) ; ainsi, le gain de stabilité entre l'ophen et la TPTZ ne s'accompagne pas d'un gain en sélectivité.

Il est donc possible que la géométrie du site tridentate ne soit pas très favorable à la manifestation d'un caractère légèrement covalent dans les liaisons Am(III)-TPTZ, car les liaisons covalentes sont plus directionnelles que les liaisons ioniques.

FIGURE 13 :

Ē

STABILITE DES COMPLEXES DE TPTZ AVEC LES LANTHANIDES ET L'AMERICIUM TRI-VALENTS MESURÉEPAR PARTAGE DE LA TPTZ $\{1\}$ ET ABSORPTIOMETRIE $\{\frac{1}{2}\}$

TABLEAU XI : SELECTIVITE DE LA TPTZ ET D'AUTRES LIGANDS AZOTÉS POUR L'AMERICIUM TRIVALENT VIS-A-VIS DES IONS H⁺ ET Nd³⁺

La stabilité du complexe varie peu avec le rayon ionique pour tous ces ligands, sauf SCN⁻. Il n'est pas prouvé que CN⁻ soit coordiné^e par l'azote.

	מא_	N ₃	SCN	Ophen	TPTZ
log β ^{Am} - pKa ₁	- 5	- 3,0	- 0,2	- 2,8	0,4
$\log \beta_1^{Am} - \log \beta_1^{Nd}$	1,1	0,9	2,3	1,4	1,4
$\log \beta_2^{Am} - \log \beta_2^{Nd}$		0,6	2,2	0,7	
log β ^{Am}	4	1,2	0,8	2,5	4,2
Référence	[3]	[3]	[3] et_152]	[4]	ce tra- vail

La faible solubilité de la TPTZ et les valeurs relativement faibles des constantes de complexation des lanthanides expliquent qu'on ne puisse déceler de modification des bandes d'absorption dans le visible, des lanthanides, lors de leur complexation en phase aqueuse, contrairement à ce qui se passe avec l'américium (voir annexe II).

En effet, la proportion de métal complexé, $\frac{[LnTPTZ^{3+}]}{[Ln]_t}$, reste inférieure, pour tous les lanthanides, à la valeur de ce rapport calculée pour le samarium, lanthanide dont le complexe avec la TPTZ est le plus stable et pour la concentration maximale en TPTZ, c'est-à-dire sa solubilité :

$$\frac{[\text{LnTPTZ}^{3^+}]}{[\text{Ln}]_{t}} = \frac{1}{1 + \frac{1}{\beta_1^{\text{Ln}}[\text{TPTZ}]}} \le \frac{1}{1 + \frac{1}{\beta_1^{\text{Sm}} s_0}} = 4,5 \ 10^{-2}$$

Compte tenu des essais déjà effectués (tableau IX), nous choisissons le méthanol.

Pour vérifier que LnTPTZ³⁺ sont des complexes sphère interne, nous allons utiliser un solvant où la solubilité de la TPTZ est suffisante pour observer les variations des spectres de transitions électroniques des ions lanthanides lors de la complexation.

1.3.2. Etudes dans le méthanol

De l'étude précédente, nous déduisons donc que le pourcentage d'ion complexé par rapport à la quantité totale de lanthanide en solution aqueuse, reste inférieur à 4,5 %. Pour augmenter ce pourcentage, nous allons utiliser un solvant constitué de méthanol et de 5 % d'eau dans lequel la TPTZ est plus soluble.

Les variations spectrales des ions lanthanides (annexe II) en fonction de la concentration en TPTZ, ne peuvent être interprétés par la formation du seul complexe Ln(III)TPTZ comme en solution aqueuse. En solution concentrée en TPTZ, il se forme vraissemblablement Ln(III)(TPTZ)₂. Nous allons vérifier cette hypothèse.

I.3.2.a. Formation du complexe Nd(III)TPT2

En solution dans le mélange méthanol/eau 5 %, la bande d'absorption du néodyme à 580 nm varie quand on ajoute de la TPTZ tant que sa concentration n'atteint pas celle du néodyme, au-delà, par contre, il n'y a plus de variation (figure 14), le néodyme réagit donc quantitativement avec la TPTZ pour former le complexe NdTPTZ.

FIGURE 14 : COMPLEXATION DU NEODYME PAR LA TPTZ DANS LE METHANOL $T = 23 \stackrel{+}{-} 2^{\circ}C$, 5 % d'eau $[NdCl_{3}]_{total} = 6.10^{-3} M$

Remarque

La TPTZ étant un réactif analytique, il peut donc servir d'étalon (dosage de TPTZ par pesée) pour doser une solution de lanthanide au titre inconnu. Cette méthode est plus simple que les dosages absorptiométriques qui nécessitent la préparation de solutions étalons de lanthanides. La loi de Beer est vérifiée (voir annexe II). Le dosage est possible pour 10⁻⁴ \leq [Nd] $_{+} \leq$ 2,4 10⁻². Pour mesurer la constante de formation de Ln(III)TPTZ, on étudie sa dissociation en milieu plus dilué, la réaction est suivie grâce aux variations spectrales de la TPTZ (figure 15) ce qui nous permet de travailler dans le domaine de concentration où on trouve, par cette méthode :

$$\log \beta_1^{\text{Nd}} = 4,05 \stackrel{+}{=} 0,13$$
$$\log \beta_1^{\text{Eu}} = 4,52 \stackrel{+}{=} 0,13$$

	t	0	0,25	0,50	0,75	1	1,5	2	3,5	7
L IPI2 J.	t	2	3	4	5	ú	7	8	9	

FIGURE 15 : VARIATION DU SPECTRE DE LA TPTZ DANS LE METHANOL LORS DE LA FORMATION DE Eu(111)TPTZ 5 % d'eau, T = 23 $\stackrel{+}{-}$ 2°C, [TPTZ]_± = 4 10⁻⁴ M, trajet optique = 1 mm

I.3.2.b. Formation du complexe Nd(III)(TPTZ)

Nous avons vérifié (voir annexe II) que le néodyme est le lanthanide qui se prête le mieux à l'étude de la complexation par la TPTZ, à partir de ses variations spectrales. ŝ

ł

Nous avons ainsi déterminé (figure 16) la stoechiométrie du deuxième complexe, Nd(TPTZ)₂, et mesuré :

$$pk_2^{Nd} = 0,8 - 0,3$$

en tenant compte de la constante, β_1^{Nd} , mesurée précédemment (§ I.3.2.b.), $(pk_2 = \log \beta_2 - \log \beta_1).$

Par cette méthode, on estime pour les autres lanthanides (annexe II) :

 $T = 23 - 2^{\circ}C$

10 0,012 p 10 6 10 8 σ

6 10⁻³

n 10⁻³

6 10-3

10-2

0,075

0,10

0,030

0,010

U

2

2

2

1

* spectre dans Pear

and the Part of the Part

- 67 -

I.3.2.c. Rôle de l'eau sur la formation des complexes néodyme-TPTZ dans le méthanol

1.18011.1.1.1

-

Le spectre de la TPTZ, aussi bien que celui du néodyme (figure 17) varie quand on passe de l'eau dans le méthanol. Nous mettons ainsi en évidence la déshydratation de l'ion Nd(IIT) aquo suivant la réaction :

$$pCH_{3}OH + Nd(III)(H_{2}O)_{n+m} \stackrel{+}{\leftarrow} mH_{2}O + Nd(III)(H_{2}O)_{n}(CH_{3}OH)_{p}$$
 (1)

Les variations spectrales (figure 17) du néodyme permettent de mesurer :

On constate alors que la réactior (1) suit la loi d'action de masse de la forme (voir annexe III.7)

$$\alpha = \frac{1}{1 - \frac{1}{K \ [H_2O]^{m}}}$$
(3)

où K est la constante de l'équilibre (1).

- 68 -

On trouve $m = 1, 8 \stackrel{+}{=} 0, 2$ et, pour m = 2

. .

 $\log K = -1,13$

Cette interprétation est à considérer avec prudence car elle ne prend pas en compte le coefficient d'activité du néodyme, inconnu dans le méthanol.

La déshydratation, ainsi mise en évidence, explique la plus grande stabilité du complexe Nd(III)TPTZ dans le méthanol par rapport à l'eau.

.

.

DEUXIEME PARTIE

المالية والالالا والمعملية ومورد ومراز

The Sourcess NUM Pre-

INFLUENCE DE L'ADDITION DE TPTZ SUR L'EXTRACTION DES LANTHANIDES ET ACTINIDES TRIVALENTS PAR DES ECHANGEURS CATIONIQUES, DANS DIVERS SOLVANTS 11.1. INTRODUCTION

Nous avons mis en évidence, dans la première partie de ce travail, la sélectivité de la TPTZ pour l'américium trivalent vis-à-vis de tous les ions lanthanides trivalents (figure 13) et des ions H^+ (tableau XI). Nous allons, maintenant, étudier les propriétés extractantes de ce ligand afin de réaliser la séparation de groupes actinides/lanthanides.

Les procédés utilisés pour la séparation de groupes actinides/ lanthanides se divisent en deux catégories.

 L'extraction de complexes anioniques d'actinides par des amines tertiaires et des sels d'annonium quaternaires. Par exemple, l'extraction suivant le mécanisme :

 Am^{3^+} + 3 C1⁻ + 3 ($\operatorname{R_3NH}^+$, C1⁻) \rightarrow $\operatorname{AmCl}_6(\operatorname{R_3NH})_3$

est à la base du procédé TRAMEX lequel implique de maintenir un pH de l'ordre de 2 et de charger la phase aqueuse en sel (par exemple LiCl au moins 10 M). Ces sels et les tampons nécessaires au contrôle du pH sont autant de réactifs chimiques susceptibles d'augmenter la quantité de déchets du procédé.

Des procédés analogues où les chlorures sont remplacés par des thiocyanates, présentent les mêmes inconvénients.

2. L'extraction de cations lanthanides par l'acide di-2-éthylhexylphosphorique (RO) $_2 \stackrel{p^{<0}}{\xrightarrow{} OH}$ (HDEHP) associé à un acide polyamine polycarboxylique, la DTPA qui complexe les cations en phase aqueuse. Ce procédé présente également des inconvénients :

- . la phase aqueuse doit être tamponnée (autour de pH = 3),
- . la cinétique n'est pas rapide, ce qui limite ses performances dans les appareils classiques de génie chimique,
- . il faut extraire les lanthanides qui sont bien plus concentrés que les actinides, ce qui augmente la dimension des installations.

Pour éviter ces inconvénients nous allons proposer des nouveaux procédés d'extraction des actinides trivalents à partir de solutions aqueuses acides en présence de lanthanides trivalents. La TPTZ sera mise à contribution pour apporter la sélectivité pour Am^{3+} et Cm^{3+} vis-à-vis des Lm^{3+} et de H^+ . Nous rappellerons d'abord quelques principes généraux de l'extraction liquide-liquide pour expliquer nos choix d'extractants. Puis nous étudierons dans les deux derniers chapitres, les deux systèmes d'extraction proposés : l'un avec l'acide α -bromocaprique (HZBFC₁₀) dans le décanol, l'antre avec l'acide dinonylnaphtalène sulfonique (HDNNS) dans le t-butylbepzène. Service of the servic

11.2. GENERALITES SUR L'EXTRACTION LIQUIDE-LIQUIDE

11.2.1. Choix des extractants

II.2.1.a. Choix du type d'extraction

L'extraction liquide-liquide permet de faire passer une espèce chimique d'une première solution (généralement la phase aqueuse) vers une seconde solution non miscible à la première (généralement la phase organique) ; l'opération inverse est une desextraction. Les métaux sont présents en phase aqueuse sous forme d'ions solvatés éventuellement complexés. Seules les espèces neutres peuvent se distribuer préférentiellement dans la phase organique. Une espèce neutre migre d'autant mieux vers la phase organique qu'elle est plus hydrophobe. Un solvant accepte d'autant plus facilement une espèce polaire que sa constante diélectrique est plus élevée.

D'autres facteurs sont invoqués pour prévoir les performances d'une extraction : liaisons hydrogènes, solubilité des espèces extraites, extraction d'eau, formation d'agrégats auxquels participent les molécules de diluant, nombre donneur du solvant et de l'extractant / 157 7 etc...

Pour extraire les complexes mis en évidence dans la partie précédente, il faut réaliser les conditions suivantes :

- . neutraliser la charge des complexes MTPT2³⁺
- . former un composé hydrophobe,
- . empêcher la précipitation de la TPTZ.

Pour conserver la sélectivité entre actinides trivalents et lanthrides, il faut éviter d'utiliser des réactifs dont l'affinité varie notablement avec le rayon ionique de ces éléments.

Nous avons essayé sans succès l'extraction d'une paire d'ions, (MTPT2³⁺, 3 X⁻), dans divers diluants avec :

$$X = I$$
, $I_{\overline{x}}$, CI , $NO_{\overline{x}}$, $CIO_{\overline{4}}$, SCN

Nous avons alors utilisé des échangeurs cationiques pour augmenter le caractère hydrophobe du complexe à extraire : ces molécules

- 73 -

peuvent échanger des ions H⁺ avec des cations de la phase aqueuse, en restant dans la phase organique grace au pouvoir hydrophobe de leurs chaînes alkyles.

L'adjonction d'un extractant neutre à un échangeur cationique peut se traduire par la formation d'un complexe métallique mixte en phase organique ; l'extractant neutre remplace les molécules d'eau restantes dans la sphère de solvation de l'ion $_167$, 168_7 . Le complexe mixte devient ainsi plus hydrophobe : ce phénomène est appelé synergisme $_167$, 168, 149_7 .

D'autre part, l'extractant neutre, s'il est suffisamment basique, peut bloquer la fonction échangeuse d'ion pouvant aller jusqu'à un antisynergisme $_$ 167, 168, 149 $_$ 7.

D'autres réactions peuvent se produire parallèlement à l'extraction par des échangeurs cationiques, en particulier la dimérisation et la polymérisation des extractants ; on obtient alors des micelles.

Un des cas les plus anciens de l'utilisation d'un extractant polymérisé est l'acide dinonylnaphtalène sulfonique (HDNNS) que nous emploierons. Pour contribuer à l'interprétation de nos résultats d'extraction, nous allons décrire les micelles.

II.2.1.b. Micelles

Le terme de micelle [155, 156]7 (figure 19) est généralement réservé à un type d'agrégation de molécules possédant à la fois une partie hydrophile et une partie hydrophobe ; c'est le cas des échangeurs cationiques.

De nombreux paramètres interviennent dans la formation de ce type de polymère, les plus importants sont :

- . la nature de la partie hydrophobe du monomère,
- . la nature de la fonction chimique polaire du monomère,
- . la quantité d'eau contenue dans le solvant,
- . la présence éventuelle d'autres molécules spécifiques pouvant participer à la micelle,

. la concentration en monomère qui doit dépasser un certain seuil, appelé concentration micellaire critique.

La partie hydrophobe de la micelle est constituée par l'agrégation des morceaux hydrophobes des monomères et la partie polaire par le rapprochement des fonctions polaires des monomères.

L'échange entre le monomère dispersé dans le diluant et la micelle est, en général, rapide (155, 156). Avec un échangeur cationique polymérisé, tel le dimonylnaphtalène, la nature du cation extrait a peu d'influence sur le degré de polymérisation et la concentration micellaire critique (154).

FIGURE 18 : EXEMPLES DE MICELLES d'après [156]

CTAB = bromure d'hexadecyltriméthylammonium voir également $\int 169_{-7}$.

- 75 -

L'étude physico-chimique de ce type de polymère est un sujet de recherche en plein développement. Nous n'avons pas trouvé dans la littérature de précision sur la géométrie des ligands situés en lère sphère de coordination des cations M^{Z^+} situés dans la micelle. En effet, la charge de M^{Z^+} doit être neutralisée par z anions, A⁻, HA constituant la micelle ; il semble stériquement exclu que les ligands A⁻ soient tous en première sphère de coordination de M^{Z^+} quand z > 2, puisque la partie hydrophobe de A⁻ ne peut être dans la partie hydrophile de la micelle inverse.

Remarque

On ne peut donc pas se représenter les complexes extraits à l'aide des schémas classiques de la chimie de coordination. On a récemment émis l'idée [169]/ que les micelles étaient caractérisées par une interface organique/au peu rigide et donc assez déformable. Il est donc possible que M^{Z^+} induise une certaine déformation de cette interface de sorte que les anions organiques l'entourent partiellement, M^{Z^+} restant entièrement dans la partie aqueuse de la micelle.

En effet, si les monomères voisins sont liés de façon assez rigide, un ordre à longue distance à tendance à s'établir dans le polymère pour aboutir à des structures plus ordonnées, c'est-à-dire de nouvelles phases par exemple du type des cristaux liquides. En fait, comme la micelle réalise une interface organique-eau dont la tension interfaciale serait pratiquement nulle $_169_7$, le paramètre important gouvernant cette interface serait sa rigidité (ou son élasticité). Ainsi, des anions organiques des micelles seraient rapprochés les uns des autres mais avec des liaisons suffisamment souples pour accueillir des cations métalliques, M²⁺, de charges variées.

II.2.1.c. Essais d'échangeurs cationiques pour extraire EuTPTZ³⁺ et AmTPTZ³⁺ dans divers solvants

L'acidité d'un échangeur cationique est un des paramètres importants de son pouvoir extractant (§.II.1.2.f.). Nous avons dosé des échangeurs cationiques dans du décanol par du décanolate de sodium (dilué dans du décanol) ou de la soude diluée dans de l'éthanol. Le $pH_{1/2}$ de ces dosages donne ainsi une indication sur les acidités relatives de divers échangeurs cationiques (tableau XII). and the second se

$\frac{\text{TABLEAU XII:}}{\text{Les pH}_{1/2}} \text{ ACIDITE D'ECHANGEURS CATIONIQUES.}$ late de sodium (a) ou la soude éthanolique (b)

Nom de l'acide	abréviation (HA)
α-bromocaprique	HoBrC ₁₀
2,6 dichlorobenzoique	ΗΨ C1 ₂
picrique	H Pi
di-2,ethyl hexyldithio- phosphorique	H DEH DTP
dibutyldithiophosphorique	H DB DTP
di-n-octyldithiophospho- rique	H DO DTP
dibutyltiophosphorique	H DB TP
di-2-éthyl hexyltiophos- rique	H DEH DTP
di-nonyl naphtalène sulfo- nique	H DNN S

and the second second

:23 ± 2°C I	= 1 M	(HNO _z ,	KNO_{z}	
-------------	-------	---------------------	-----------	--

НА	Solvant	[TPTZ] (mole.1 ⁻¹)	[HA] _t (mole.1 ⁻¹)	рН	DAm	D ^{Eu}	$f_{o} = \frac{D^{Am}}{D^{Eu}}$
HDBTP	xylène	0,1	0,2	1,3	2,5	1,6	1,5
	nitrobenzène	0,1	0,2	1,3	4,8	1,4	3,4
HDEHDTP	xylène	0,1	0,2	1,3	5,5	0,20	26
	t-bultylbenzène	0,1	0,2	1,3	2,8	0,16	18
	nitrobenzène	0,1	0,2	1,3	6,3	0,10	63
HaBrC ₁₀	décanol	0,01	1	2,3	0,28	0,052	S,4
HDNNS	t-butylbenzène	0,1	0,1	1,0	14	1,0	14

Associé à la TPTZ, certains de ces échangeurs cationiques, extraient sélectivement l'américium dans divers diluants choisis en fonction des résultats du tableau IX.

L'acide di-2 éthyl hexyldithiophosphorique est le réactif permettant la meilleure sélectivité (tableau XIII) ; malheureusement, c'est une molécule peu stable en présence d'acide nitrique $_166_7$. Nous allons donc étudier les mécanismes d'extraction par les acides α -bromocaprique (H α BrC $_{10}$) et dinonylnaphtalène sulfonique (HDNNS) associé à la TPTZ.

Le décanol est un des rares diluants utilisable industriellement, solubilisant la TPTZ : nous l'utiliserons donc pour l'étude du système TPTZ + HaBrC₁₀.

Par contre, ni ce diluant, ni le dodécane, contrairement au t-butylbenzène, ne permettent de solubiliser la TPTZ en présence de HDNNS. Same - - - -

11.2.2. Lois thermodynamiques de l'extraction liquide-liquide

Nous rappellerons les lois permettant de prévoir l'extraction de cations métalliques : il s'agit essentiellement de la loi d'action de masse appliquée à un système diphasé.

Les réactions chimiques ayant lieu simultanément à l'extraction seront également envisagées dans la mesure où elles interviennent, généralement en la compliquant, dans l'interprétation des résultats.

Le but de ce chapitre n'est pas de présenter de façon exhaustive l'extraction liquide-liquide : ce sujet, devenu classique, est d'ailleurs traité par de nombreux auteurs (en particulier : _154_7, _167_7, _168_7). Nous nous contenterons d'énoncer le principe des méthodes expérimentales et de leur interprétation, les calculs classiques étant simplement rappelés en annexe.

II.2.2.a. Propriétés chimiques des extractants

La TPTZ et les acides organiques, HA, choisis (§.II.1.2.c.) peuvent participer aux réactions chimiques suivantes :

- 1. protonation de la TPTZ en phase aqueuse (§.I.1.2. d.),
- 2. formation de MTPTZ³⁺ (M = Ln ou An) en phase aqueuse (§.I.3.1.b. et c),
- 3. extraction d'acide nitrique par la TPTZ,
- 4. dimérisation de HA,
- polymérisation de HA ou KA (§.II.1.1.b.) par formation de micelles en phase aqueuse,
- polymérisation de HA ou KA (§.II.1.1.b.) par formation de micelles inverses en phase organique avec extraction d'eau,
- 7. association en phase organique entre la TPTZ et HA.

Les deux premières réactions ont déjà été étudiées ; on peut les prévoir quantitativement à l'aide des constantes mesurées dans la première partie. Nous avons vérifié par des dosages d'acidité de la phase organique (décanol ou t-butylbenzène) que la réaction 3 n'intervient pas; ce qui est dû au caractère lipophile de HTPTZ⁺ et H_2TPTZ^{2+} . ÷

Les propriétés de HA seul (réactions 4, 5, 6) seront étudiées grâce au dosage pH métrique de HA dans un système diphasé reproduisant les conditions de l'extraction. Une fois ces propriétés connues, l'étude du partage de la TPTZ permet de déterminer les paramètres régissant la réaction 7. Nous allons expliciter comment des dosages pH-métriques de HA peuvent être interprétés pour déterminer son degré de polymérisation (réactions 4, 5 et 6).

ETUDE pH-METRIQUE DES EXTRACTANTS

Les échangeurs cationiques étant des acides organiques, nous les doserons par acidimétrie. Le principe du dosage est analogue à celui d'un acide en solution aqueuse ; mais son mécanisme peut être compliqué par les réactions suivantes :

- . extraction du cation, K⁺, ajouté simultanément au titrant KOH,
- . polymérisation de l'échangeur cationique généralement en phase organique, sous sa forme basique,
- . nous ne tiendrons pas compte de la désextraction éventuelle de la base.

C'est pour ces raisons que la réaction de dosage s'écrit :

$$n(\overline{HA})_{m} + mnK^{\dagger} \neq mnH^{\dagger} + m(\overline{KA})_{n}$$
 (1)

Ainsi, HA est majoritairement sous forme $(HA)_m$ ou $(KA)_n$ dans la phase organique quand il est dosé par de la potasse aqueuse.

Le dosage permet de mesurer les degrés de polymérisation, m et n, grâce à l'étude du déplacement de l'équilibre (1).

Dans le cas où les approximations classiques

$$[KA]_{t} \approx n[(KA)_{n}]$$
(2)

$$c \approx m \left[\left(HA \right)_m \right]$$
 (3)

où c est la concentration totale de HA avant dosage;

$$[H^{+}]_{o} \approx [KA]_{t}$$
 (4);

-

dans la zone tampon, c'est-à-dire autour du point de demi-équivalence :

$$C_{o} \cong \left[KA \right]_{t} \left(o\bar{v} C_{o} = \left[KOH \right]_{t} \right)$$
(5)

sont vérifiées.

L'établissement de l'équation théorique de variation du pH au cours du dosage (voir annexel@montre que le pH initial est :

$$pH_0 = A - \frac{n}{m(n+1)} \log c$$
 (6)

et, dans la zone tampon de $(HA)_m/(KA)_n$, après avoir versé une quantité [KOH]_t de potasse équivalente à Co mole.l⁻¹,

$${}^{H}_{Co/C} = B + C \left(\frac{C_0}{C}\right) + \left(\frac{1}{n} - \frac{1}{m}\right) \log C$$
 (7)

$$A = \frac{n \ pKa' - \log \beta_n + \frac{n}{m} \log k_m + \frac{n}{m} \log m - \log n}{n + 1} ,$$
 (8)

$$Ka = \frac{\left[H^{+} \right] \left[\overline{KA} \right]}{\left[K^{+} \right] \left[\overline{HA} \right]}, \qquad (9)$$

(Ka est constant car la force ionique est maintenue constante)

$$\beta_{n} = \frac{\left[\left(\vec{KA}\right)_{n}\right]}{\left[\vec{KA}\right]^{n}}$$
(10)

et

$$k_{m} = \frac{\left[(HA)_{m} \right]}{\left[\overline{HA}_{m} \right]^{m}}$$
(11)

$$B = pKa' - \frac{1}{n} \log \beta_n + \frac{1}{m} \log k_m + \frac{1}{m} \log m - \frac{1}{n} \log n$$
(12)

$$C\left(\frac{Co}{C}\right) = \frac{1}{n} \log \frac{Co}{C} - \frac{1}{m} \log \left(1 - \frac{Co}{C}\right)$$
(13)

- 81 -

Donc, pH (ou pH) varie linéairement en fonction de log C, la pente de la droite est :

n		1		1	
•	(ou	_	-)
nt(⊓+1)		n		m	

Ainsi, les mesures expérimentales de ces pentes pour, par exemple pH_0 et $pH_{1/2}$ permettent de déduire les degrés de polymérisation, m et n, de $(HA)_m$ et $(KA)_n$ (figures19). S'il n'y a pas de polymérisation, $pH_{1/2}$ ne dépend pas de la concentration de HA, autrement dit, si n = m = 1, la pente est nulle (figure 19a) et $pH_{1/2}$ = pka (d'après 7, !3 et 14).

Dans ce cas :

$$pH_0 = \frac{1}{2} pKa' - \frac{1}{2} \log c \text{ (d'après 6 et 8)}$$
 (14)

La polymérisation de HA sous forme (HA)_m a pour effet :

- . d'augmenter $pH_{1/2}$ quand la concentration totale en HA augmente (figure 19a)
- . de contrecarer la diminution de pH₀ induite par l'augmentation de la concentration en HA, c, c'est-à-dire que pH₀ est plus élevé que ne l'indique la relation 14 (figure 19b).

Par contre, la $\ensuremath{\mathbb{F}}$ olymérisation de KA sous forme (KA)_n a les effets contraires :

- . diminution de pH_{1/2}, quand la concentration totale en HA augmente (figure 19a) ; on remarque d'ailleurs que m et n jouent des rôles symétriques pour pH_{1/2} (d'après 7, 13, 14),
- . accentuation de la diminution de pH_{O} induite par l'augmentation de la concentration totale en HA (figure 19c)

Autrement dit, la polymérisation de la forme acide de HA, limite sa dissociation et diminue donc la force de l'acide, alors que la polymérisation de sa forme basique a l'effet inverse.

Les figures 19 montrent que la mesure des degrés de polymérisation par cette méthode est peu précise pour des degrés de polymérisation supérieurs à 10.

DETERMINATION DES DEGRES DE POLYMERISAT. UN D'UN ACIDE FIGURE 19 : ET DE SA BASE CONJUGUEE, PAR DOSAGES pH METRIQUES DANS UN SYSTEME A DEUX PHASES.

-

and the state of t

II.2.2.b. Extraction par un échangeur cationique-monomère.

Nous utiliserons comme extractant, des échangeurs cationiques : un cation M^{S^+} , dans une solution aqueuse contenant des anions X^{t^-} , est extrait par un échangeur cationique suivant la réaction :

$$M^{S^{+}} + n \chi^{t^{-}} + m \overline{HA} \neq \overline{M}_{1} + (s - nt) H^{+}, \qquad (1S)$$

où

$$M_1 = M X_n A_{s-nt} (HA)_{m-s+nt}$$

caractérisée par la constante d'extraction :

$$\operatorname{Kex}_{1} = \frac{\left[\overline{M_{1}}\right]\left[H^{+}\right]^{\mathrm{S-nt}}}{\left[M^{\mathrm{S+}}\right]\left[X^{\mathrm{t-}}\right]^{\mathrm{T}}\left[\overline{HA}\right]^{\mathrm{m}}}$$
(16)

Le coefficient de partage du métal ((2) §.I.2.2.) s'exprime alors: log $D^{M} = \log \text{Kex}_{1} + (\text{s-nt}) \text{ pH} + n \log [X^{t-}] + m \log [HA]$ (17)

Si les réactions chimiques simultanées à l'extraction ont pu être étudiées par ailleurs, $[X^{t-}]$ et $[\overline{HA}]$ peuvent être calculés à prrtir des conditions expérimentales (pH, $[HA]_t$, $[X]_t$). Les variations de log D^M en fonction du pH (de log $[X^{t-}]$ ou log $[\overline{HA}]$) sont représentées par une droite de pente (s-nt) (ou n, ou m), ce qui permet de déterminer la stœchiométrie de la réaction d'extraction (15) (n,m,s) et la constante d'extraction. On peut alors étudier le synergisme de HA avec un autre extractant (§.II.1.2.e.)

II.2.2.c. Extraction par un échangeur cationique polymérisé

Nous utiliserons également le HDNNS qui est polymérisé. Dans ce cas, la théorie permettant la prédiction de l'extraction à partir de la constante d'extraction n'est pas complète. En éffet, quand l'extractant est polymérisé, on a constaté expérimentalement que les variations de log D en fonction de log $\begin{bmatrix} HA \\ I \end{bmatrix}_t$ sont représentées par une droite de pente l (m = 1 dans (17)) alors que l'électro-neutralité du complexe et les variations de log D en fonction du pH montrent que s molécules de HA ont échangé H⁺ avec la phase aqueuse (s est la charge de cation extrait) même si s > 1. On a proposé $\int 154_7$ de modéliser la réaction d'extraction par :

- 84 -

$$M^{S^+} + (H\overline{A})_p \neq M\overline{A}_s (H\overline{A})_{p-s} + sH^+$$
 (18)

On exploite alors les résultats de façon analogue à l'exploitation de l'extraction par un échangeur cationique non polymérisé (§.II.1.2.b.)

85

$$\log D = \log \frac{K_{ex}}{p} + s pH + \log \left[HA\right]_{t}$$
(19)

où

$$Kex = \frac{\left[\overline{M}\right] \left[H^{+}\right]^{S}}{\left[M^{S+}\right] \left[(\overline{HA})_{p}\right]}$$
(20)

On remarque que la réaction (18) n'est valable que si la concentration en métal est très faible ; sinon, on imagine, que l'extraction doit avoir lieu suivant des réactions successives ou par extraction dans une troisième phase. Nous proposons donc de prévoir l'extraction à l'aide des deux modèles suivants.

1. Extraction par formation de complexes successifs.

$$M^{S^+} + \overline{M}_{j-1} \neq \overline{M}_j + S H^+$$
(21)

où

et

 $M_{j} = (MA_{s})_{j} (HA)_{p-sj}$ $Kex_{j} = \frac{\left[\overline{M}_{j}\right] \left[H^{+}\right]^{s}}{\left[M^{s+}\right] \left[\overline{M}_{j-1}\right]}$ (22)

On doit alors s'attendre à une variation des propriétés de l'extractant en fonction de la quantité de métal extrait.

2. Formation d'une 3ème phase

Nous avons vu que les micelles sont considérées par certains auteurs [155, 156] comme étant une nouvelle phase. Nous allons montrer comment la loi d'action de masse permet, dans ce cas, de décrire l'extraction en généralisant la réaction d'extraction (18) aux cas où la concentration en métal est suffisante pour que plusieurs cations puissent être présents simultanément dans la même micelle. Si nous notons \overline{n}_M le nombre de moles de métal extrait, sa concentration dans la phase organique classique (2ème phase) est :

$$[\overline{M}] = \frac{\overline{n}}{\overline{V}}$$
 (23)

et dans la micelle (3ème phase)

$$\begin{bmatrix} \overline{\overline{M}} \\ \overline{\overline{M}} \end{bmatrix} = \frac{\overline{\overline{M}}_{M}}{\overline{\overline{V}}}$$
(24)

où \overline{V} et $\overline{\overline{V}}$ sont les volumes des 2ème et 3ème phases.

Comme le degré de polymérisation p, de HA et la valeur $\overline{\overline{V}_0}$ d'une micelle sont fixes ou peu dispersés autour de leur valeur moyenne,

$$\begin{bmatrix} HA \end{bmatrix}_{t} = \frac{mp}{V}$$
(25)

(où n est le nombre de micelles)

et
$$\overline{V} = n \overline{V}_0$$
 (26)

on en déduit, en substituant (26) et (24) dans (23).

$$\begin{bmatrix} \vec{M} \end{bmatrix} = \begin{bmatrix} \vec{\tilde{M}} \end{bmatrix} \frac{n \overline{\tilde{V}_0}}{\overline{V}}$$
(27)

ou encore, en substituant (25) dans (27)

$$[M] = \left[\overline{\overline{M}}\right] \frac{[\overline{H}\overline{A}]_{t}}{p} \overline{V}_{s}$$
(28)

 $(ou[\overline{HA}]_t$ est la concentration totale introduite d'extractant, c'est donc plutôt $[A]_t$).

On note $[\overline{H}]$ la concentration de ligand lié à H^+ , mais pas à M^{S+} , dans la micelle ; on peut lui appliquer les relations (27) et (28) ci-dessus sous la forme

$$p[(\overline{HA})_{p}] = [\overline{H}] n \frac{\overline{V}_{0}}{\overline{V}}$$
(27')

et

$$p(\overline{HA})_{p} = \left[\overline{H}\right] \frac{\lfloor HA \rfloor_{t}}{p} = \overline{V_{0}}$$
(28')

Ainsi, la réaction d'extraction (18) se généralise, avec ces notations, en :

M^{S+} + H ≠ M + 5 H⁺ (29)

de constante d'extraction

$$\vec{R} = \frac{\left[\vec{M}\right]\left[H^{+}\right]^{5}}{\left[M^{5}\right]\left[\vec{H}\right]}$$
(30)

Compte-tenu de (27) et (27'), cette constante d'extraction (30) est liée à Kex (20) par la relation :

$$\vec{\overline{K}} = -\frac{Kex}{p}$$
(31)

la réaction (18) est donc bien un cas particulier de la réaction (29) ; au degrés de polymérisation, p, constant, près, elles ont même constante d'extraction comme le montre (31).

Nous discuterons plus en détail cette théorie de l'extraction que nous proposons, au moment où nous l'utiliserons pour interpréter les résultats expérimentaux d'extraction par le HDNNS et le HDNNS associé à la TPTZ.

L'équilibre de partage (29) signifie simplement que l'activité de l'espèce extractante intervient à la puissance 1 dans la loi d'action de masse (30), du moment qu'elle fait partie d'un polymère dont les propriétés extractantes, contrairement au modèle précédent (21), ne sont pas modifiées par les cations extraits M^{S+} tant que les micelles ne sont pas saturées autrement dit Kex; (22) ne dépend pas de j.

II.2.2.d, Saturation en métal de la phase organique

Les équations (17) et (19) nous permettront de déterminer, à partir d'expériences où le cation extrait est en faible concentration, le mécanisme d'extraction, nous vérifierons que le même mécanisme reste responsable de l'extraction en présence de quantités notables de métal.

L'extraction peut, en effet, être limitée par la solubilité du métal en phase organique ou par un changement de mécanisme d'extraction avec l'augmentation de la quantité de métal extrait.

Nous allons établir les équations qui permettent de prévoir l'extraction jusqu'à saturation de l'extractant par les deux méthodes expérimentales que nous utiliserons.

Une <u>première méthode</u> d'étude de la saturation de la phase organique par le métal extrait, consiste à faire varier la concentration du métal en fixant toutes les autres concentrations.

A dilution infinie, le coefficient de distribution, D_{ω} , du métal est connu (équation (17)), quand la concentration en métal dans la phase organique devient suffisante, l'extractant est consommé ; l'équation (17) permet de calculer (voir annexe III.10) :

$$\left[M\right]_{t} = \frac{\left[HA\right]_{t}}{m} (1 + \frac{1}{D}) (1 - \frac{D}{D_{m}})^{1/m}$$
(32)

et donc d'étudier les variations de log D en fonction de log $[M]_t$. Si D_{∞} est suffisamment grand (log $D_{\infty} > 1$ par exemple), log D chute brutalement quand $[M]_t$ atteint la stoechiométrie ($[M]_t = \underline{[HA]_t}$). Quand la phase organique est saturée en métal, l'approximation :^m

$$\left[\overline{M}\right]_{t} \simeq \frac{\left[HA\right]_{t}}{m}$$
(33)

montre que :

$$\log D \simeq \log \frac{\left[HA\right]_{t}}{m} - \log \left[M\right]_{t}$$
(34)

Ainsi, la courbe représentative des variations de log D en fonction de log $[M]_t$ est une droite de pente - 1 qui coupe l'axe horizontal (log D = 0) au point représentant la stoechiométrie ($[M]_t = \frac{[HA]t}{m}$). Voir figure 23e.

Si l'extractant est polymérisé, la relation (34) est encore applicable ; par contre, avant saturation complète de la phase organique, l'allure de la courbe log D = $f(\log [M]_t)$ dépend essentiellement de D_∞, c'est-à-dire de la constante d'extraction. Deux cas sont a priori possibles.

 Les micelles sont effectivement assimilables à une troisième phase et un calcul analogue au précédent, mais à partir de la constante d'extraction définie par (31) (ou formellement par (20)), montre que :

$$\begin{bmatrix} M \end{bmatrix}_{t} = \frac{\lfloor HA \rfloor_{t}}{m} (1 + \frac{1}{D}) (1 - \frac{D}{D_{\infty}})$$
(35)

2. La saturation s'effectue par formation de complexes successifs (réaction 21) ; théoriquement on peut appliquer la relation (35) où D_{ω}^{j} dépend du complexe \overline{M}_{j} majoritaire. Comme D_{ω}^{j} n'est pas connu, on ne peut prévoir l'allure des courbes.

D'autre part, si deux métaux M et M' sont extraits suivant le même mécanisme, que la phase organique est saturée par M,où M' reste à l'état de trace :

$$D' = D \frac{Kex}{Kex}$$
(36)

Une <u>deuxième méthode</u> pour saturer la phase organique en métal consiste à équilibrer la phase aqueuse, sans excès d'acidité et concentrée en ion, M^{S+}, à extraire. L'échange cationique provoque une diminution de pH qui est mesurée après séparation des phases. La phase organique est alors équilibrée avec une nouvelle phase aqueuse sans excès d'acidité de même composition que la précédente et ainsi de suite, on effectue plusieurs lavages de la phase organique.

Les variations de pH des phases aqueuses successives peuvent être prévues à l'aide de la loi d'action de masse et du bilan de matière entre le i^{ême} et le $(i+1)^{eme}$ lavage qui aboutit au système d'équations :

$$\begin{bmatrix} \overline{H}A \end{bmatrix}_{i+1} = \begin{bmatrix} \overline{H}A \end{bmatrix}_{i} - \frac{m}{s-nt} \begin{bmatrix} H^{\dagger} \end{bmatrix}_{i+1}$$
(37)

$$[\mathbb{M}]_{i+1} = [\overline{M}]_{i} + \frac{1}{s-nt} [H^{\dagger}]_{i+1}$$
(38)

$$[x^{t}]_{i+1} = sx_0 - \frac{n}{s-nt} [H^{t}]_{i+1}$$
(39)

$$\left[M^{s+}\right]_{i+1} = x_{0} - \frac{1}{s-nt} \left[H^{+}\right]_{i+1}$$

$$(40)$$

où $x_{\rm O}$ est la concentration du sel $MX_{\rm S}$ utilisé pour introduire $M^{\rm S+}$ en phase aqueuse.

Les conditions initiales imposent :

$$\left[\overline{HA}\right]_{0} = \left[\overline{HA}\right]_{1}$$
(41)

$$\left[\overline{M} \right]_{0} = 0$$
 (42)

La loi d'action de masse (équation (16)) permet de calculer H^+ et donc les concentrations de toutes les espèces en solution (équations (37) à (40)) :

$$\operatorname{Kex} = \frac{\left(\left[\operatorname{M}\right]_{i} + \frac{\left[\operatorname{H}^{\prime}\right]_{i+1}}{\operatorname{s-nt}}\right)\left[\operatorname{H}^{+}\right]_{i+1}^{\operatorname{s-nt}}}{\left(x_{0} - \frac{\left[\operatorname{H}^{+}\right]_{i+1}}{\operatorname{s-nt}}\right)\left(\operatorname{sx}_{0} - \frac{\operatorname{n}\left[\operatorname{H}^{+}\right]_{i+1}}{\operatorname{s-nt}}\right)\left(\left[\operatorname{H}^{-}\right]_{i} - \frac{\operatorname{m}\left[\operatorname{H}^{+}\right]_{i+1}}{\operatorname{s-nt}}\right)^{\operatorname{m}}} (43)$$

Les courbes théoriques tracées à l'aide de ces relations ((37) à (43)) montrent que (figure 20) :

à (43)) montrent que (ingune 20, 1) . pour une valeur donnée du rapport $\frac{\begin{bmatrix} HA \end{bmatrix}_t}{\begin{bmatrix} M \end{bmatrix}_t}$, la saturation de la phase organique n'est possible que si la constante d'extraction est supérieure à un certain minimum,

. quand la phase organique est saturée en métal, le pH varie linéairement avec le nombre de lavages ; on peut retrouver ce comportement en faisant les approximations suivantes pour i > j:

$$\left[H^{\dagger}\right]_{i+1} \ll x_{o} \tag{44}$$

$$[M^{s+}]_{i+1} \cong x_0 \tag{45}$$

$$\left[X^{t}\right]_{i+1} \cong sx_0 \tag{46}$$

$$\left[\overline{M} \right]_{\underline{i+1}} \cong \frac{\left[\overline{HA}\right]_{\underline{t}}}{\underline{m}}$$
(47)

et

alors

$$\left[H^{\dagger}\right]_{i+1} \approx \alpha \left(1 - \alpha\right)^{i-j} \left[\overline{HA}\right]_{j}$$
(48)

οù

$$\alpha = \frac{1}{\frac{\left[HA\right]t}{1 + \left(\frac{S-m}{m \text{ Kex xo}}\right)^{1/m}}}$$
(49)

90 -

$$si j = 1$$

$$pH_{i} = -\frac{1}{m} (pKex - \log x_{0} - \frac{s-m}{t} \log sx_{0}) - (1 - \frac{1}{m}) \log [HA]_{t}$$

+ i log (1 +
$$\left(\frac{\text{mKex x}_{0} (xs_{0})^{\frac{5-m}{t}}}{[HA]_{t}}\right)^{1/m}$$
 (50)

Si les micelles sont assimilables à une 3ème phase, la constante d'extraction ((31) ou (20)) et les bilans de matière ((37) à (42)) montrent que l'expression (50) où m = 1 est encore valable, les courbes ont donc l'allure de la figure 20. On montre d'autre part, que dans ce cas, la saturation n'est possible que si les anions, X^{t-} , de la phase aqueuse ne sont pas extraits.

FIGURE 20 : SATURATION D'UN ECHANGEUR CATIONIQUE EN PHASE ORGA-NIQUE PAR DES LAVAGES SUCCESSIFS DE PHASES AQUEUSES CHARGEES EN ION METALLIQUE

II.2.2.e. Extraction par synergie entre un échangeur cationique et un extractant neutre

Nous avons vu (§.II.2.1.a.) que l'adjonction d'un extractant neutre, L, à un échangeur cationique, HA, peut donner lieu à un phénomène de synergisme dû à l'extraction d'un complexe mixte :

$$M_2 = M X_n A_{s-nt} (HA)_{m-s+nt} L_r$$

suivant la réaction :

$$M^{S^{+}} + n X^{t^{-}} + m \overline{HA} + r \overline{L} \neq \overline{M_2} + (s-nt) H^{+}$$
(51)

Comme précédemment (§.II.2.2.b.), la constante d'extraction :

$$\operatorname{Kex}_{2} = \frac{\left[\widetilde{M}_{2}\right] \left[H^{+}\right]^{s-nt}}{\left[M^{s+}\right] \left[X^{t-}\right]^{n} \left[\widetilde{H}_{A}\right]^{m} \left[\widetilde{L}\right]^{T}}$$
(52)

permet de calculer :

$$\log D^{M} = \log \operatorname{Kex}_{2} + (s-nt) pH + n \log [X^{t-}] + m \log [\overline{HA}] + r \log [\overline{L}]$$
(53)

II.2.2.f. Expressions théoriques des constantes d'extraction

La constante d'extraction est l'expression de la loi d'action de masse qui traduit les variations d'enthalpie libre lors d'une transformation mettant en jeu une variation du nombre de particules du système. Comme l'enthalpie libre est une fonction d'état, on peut décomposer cette transformation suivant divers chemins réactionnels pour décomposer l'extraction en une série de réactions chimiques.

On exprime ainsi la constante d'extraction, en faisant intervenir le partage du complexe métallique, le partage du ligand, la compétition entre complexation et protonation en phase aqueuse :

$$\operatorname{Kex}_{1} = \frac{D_{O}^{M_{1}}}{(D_{O}^{HA})^{m}} \beta_{M_{1}} \kappa^{5-nt}$$
(54)

où D_{A}^{B} est le coefficient de partage de l'espèce B

 β_{M1} la constante de formation, en phase aqueuse, du complexe M₁

Nous proposons d'utiliser les constantes d'hydrophobie de fragments (§.I.2.2.c.) pour une série d'extractants ayant les mêmes fonctions chimiques mais des chaînes alkyles différentes (A et A' par exemple); si les valeurs de β_m et Ka sont peu modifiées :

$$\log D_{o}^{HA} \cong \log D_{o}^{HA} + f_{A-A}'$$
 (55)

$$\log D_{O}^{M_{1}^{\prime}} \cong \log D_{O}^{M_{1}} + \mathfrak{m} f_{A-A}^{\prime}$$
(56)

La constante d'extraction (54), ne dépend donc pas de la longueur de la chaîne alkyle. D'autre part, si la chaîne alkyle est trop courte, une partie de l'extractant passe en phase aqueuse ce qui déplace l'équilibre d'extraction dans le sens d'une diminution du coefficient de partage du métal.

De même, la constante d'extraction, en cas de synergisme :

$$\operatorname{Kex}_{2} = \frac{D_{o}^{M_{2}} \quad \operatorname{Ka}^{s-nt}}{(D_{o}^{HA})^{m} \quad (D_{o}^{L})^{r}} \beta_{M_{2}}$$
(57)

ne dépend pas de la longueur de la chaîne alkyle.

La sélectivité de l'extraction de l'américium trivalent vis-àvis de l'europium peut s'exprimer par :

$$\frac{\kappa_{ex_{2}}^{Am}}{\kappa_{ex_{2}}^{Eu}} \stackrel{\beta(Am)_{2}}{=} (58)$$

si les deux ions sont extraits suivant le même mécanisme (car : $D_0^{(Am)}2 \cong D_0^{(Eu)}2$).

93

La sélectivité dela TPTZ que nous avons mesuré en phase aqueuse (voir lère partie) ne se retrouvera en phase organique que si :

$$\frac{{}^{\beta}(Am)}{{}^{\beta}(Eu)}_{2} \cong \frac{{}^{\beta}AmTPTZ}{{}^{\beta}EuTPTZ}$$
(59)

cette relation n'est certainement pas vérifiée si l'anion organique A⁻, modifie notablement les propriétés du complexe MTPTZ³⁺, $_{A}$ H₂O.

11.3. EXTRACTION PAR L'ACIDE α -BRONOCAPRIQUE (H α BrC10) ET LA TPTZ DILUES DANS LES DECANOL.

11.3.1. Propriétés des extractants

II.3.1.a. L'acide a-bromocaprique

* <u>Une étude biliographique</u> $_$ 149 $_$ 7 sur l'extraction de cations métalliques par des acides carboxyliques dans divers diluants, montre qu'ils se comportent comme des échangeurs cationiques. Le complexe extrait comporte généralement, en plus des ions carboxylates, un certain nombre de molécules (neutres) d'acide carboxylique (sans participation d'anion de la phase aqueuse) soit $\overline{M_{A}}_{\rm S}$ HA_(m-S) (où m > s). C'est le cas de certains lanthanides $\underline{/}$ 149_7 extraits par, à la fois des molécules ionisées et non ionisées, des acides carboxyliques dans des diluants non alcooliques ; par contre le cobalt divalent est extrait par l'acide hexanoïque dans l'hexanol sans molécule neutre d'extractant, sous forme CoA₂. L'américium trivalent est extrait par l'HABrC10 dans le t-butylbenzène (ou par l'acide caprique dans le benzène) sous forme AmA₃(HA)₅ $\underline{/}$ 149_7.

Dans les solvants peu polaires et aprotiques, les acides carboxyliques sont dimérisés $\int 4_7$.

Les acides carboxyliques α -halogénés sont plus acides que leurs homologues non-halogénés [149] ce qui, souvent [144], et en particulier pour les acides carboxyliques, diminue la force des liaisons hydrogène et donc déstabilise le dimère.

* Partie expérimentale

L'étude des variations de l'indice de réfraction de solutions de H $_{
m MBrC_{10}}$ dans le décanol, en fonction de la concentration en H $_{
m MBrC_{10}}$, ne montre pas de dimérisation ; mais cette méthode est peu sensible (1, 149_7.

Les courbes représentatives des variations de pHo et $pH_{1/2}$ en fonction de colog [HaBrC10] + sont des droites de pente 1 (figure 21).

Nous avons calculé (§.II.2.2.a.) les valeurs théoriques de ces pentes (figures 19). Nous avons ainsi montré que si la pente de la droite représentative des variations de pH 1/2 en fonction de log[HaBrC10] est voisine de - 1, cela démontre (figure 19a : pente - 1 ; n > 100 ; m =1) que la forme acide est monomère et la forme basique polymère. Les variations de pHo avec la concentration en HaBrC10, confirment (figures 19b et c) ce résultat.

FIGURE 21 :

T = 23 ± 2°C [KCL] = 1 M

RESULTATS DU DOSAGE DE L'ACIDE Q-BROMOCAPRIQUE DILUE

Série 1 : dosage avec un titrimètre automatique à moteur pas à pas (temps de dosage, 6 heures environ) asservi à la dérivée.

Série 2 : équilibrage des deux phases dans des tubes (temps d'agitation, 10 minutes)

Remarque

On remarque effectivement la présence de plusieurs phases en milieu basique pour des concentrations en HaBrC10 supérieures à 1 M,
HuBrC10 2 M forme un gel en une seule phase (toute l'eau est dans le gel) ; nous avons vérifié, par des dosages en retour, que HuBrC10 était bien dans la phase organique et les interfaces (nous avons dénombré jusqu'à 5 phases). HuBrC10 est un liquide plus lourd que l'eau.

Les constantes d'hydrophobie de fragments (§.I.2.2.c.) permettent de prévoir :

 $\log D^{CH_3(CH)_2} 7^{CHBrCO_2H} = 4.82$

Nous n'avons pas réussi à mesurer le coefficient de partage de H μ BrC₁₀ en marquant cet acide avec ⁸²Br⁻ car la réaction d'échange :

$$H\alpha BrC_{10} + {}^{82}Br^{-} \neq H\alpha {}^{82}BrC_{10} + Br^{-}$$

est trop lente à T ≤ 60°C et à T ≥ 70°C on risque de dégrader HoBrC10.

II.3.1.b. Influence de la concentration en acide a-bromocaprique sur le partage de la TPTZ

Après avoir mis en évidence la nature des espèces de HoBrC10 en fonction du pH et de sa concentration (§.II.3.2.a.) nous allons étudier son comportement en présence de TPTZ.

L'acide α -bromocaprique augmente le coefficient de partage de la TPTZ entre le décanol et une phase aqueuse à $0 \le pH \le 3$. Pour une concentration fixe d'HulrC₁₀, les variations de log D^{TPTZ} en fonction du pH ont même allure qu'er l'absence d' HuBrC₁₀ (figure 8) et sont décalées dans le sens d'une augmentation de D^{TPTZ}.

Nous avons vu que H α BrC10 peut se polymériser en phase organique (§.II.3.1.a.) : le pH de la phase aqueuse est maintenu suffisamment acide pour que H α BrC10 n'extrait pas d'ion K⁺. Pour tenir compte de la protonation de la TPTZ en phase aqueuse nous traçons (figure 22).

 $\left[\log D^{TPTZ} - \log(1 + \frac{\left[H^{+}\right]}{Ka_{1}} + \frac{\left[H^{+}\right]^{2}}{Ka_{1}}\right] = \text{n fonction de } \log \left[HaBrC_{10}\right]$

où [$H\alpha BrC_{10}$] est calculé à l'aide des données expérimentales, [$H\alpha BrC_{10}$]_t

 $[TPTZ]_{t}$ et des paramètres D_0^{TPTZ} , pKa₁, pKa₂ mesurés par ailleurs (§.I.2.2.d.)

FIGURE 22 : INFLUENCE DE LA CONCENTRATION EN ACIDE a-BROMOCAPRIQUE (HA) SUR LE PARTAGE DE LA TPTZ.

 $n \mbox{ est}$ la stoechiométrie du composé formé dans le décanol suivant la réaction :

$$\overline{\text{TPTZ}} + n \, \overline{\text{H}\alpha\text{BrC}_{10}} \not\equiv \overline{\text{TPTZ}} \, (\text{H}\alpha\text{BrC}_{10})_n \tag{2}$$
La figure ²² montre que n = 2.

La constante

$$k = \frac{\left[\overline{TPTZ} \right] \left[H\alpha BrC_{10} \right]^2}{\left[\overline{TPTZ} \left(H\alpha BrC_{10} \right)_2 \right]}$$
(3)

de l'équilibre (2) est mesurée à partir de ces résultats :

 $colog k = 1,70 \pm 0,18$

On vérifie (figure 22) que la réaction (2) rend compte des résultats :

$$\log D^{\text{TPTZ}} + \log(1 + \frac{\left[H^{+}\right]}{Ka_{1}} + \frac{\left[H^{+}\right]^{2}}{Ka_{1}} = \log D_{0}^{\text{TPTZ}} + \log (1 + \frac{\left[\frac{HxBrC_{10}}{k}\right]^{2}}{k})$$
(4)

Nous pouvons alors prévoir les concentrations des diverses espèces en solution (TPTZ, HTPTZ⁺, H₂TPTZ²⁺, TPTZ, HxBrC₁₀ et TPTZ(HxBrC_{1c})₂) à partir des données expérimentales ([HxBrC₁₀]_t, [TPTZ]_t, pH) et des paramètres précédemment calculés (pKa₁, pKa₂, D₁PTZ et k).

Ainsi, nous avons montré que la TPTZ et l'HuBrC10 donnent lieu aux réactions chimiques suivantes :

- A pH élevé l'HuBrC₁₀ s'est polymérisé en (KαBrC₁₀)_n, où n > 10, aux concentrations où nous l'avons étudié [HuBrC₁₀]_t > 0,1 M ; à concentration plus élevée le réactif peut former plusieurs phases
- . d'un milieu acide, si la concentration est supérieure à 0,1 M, HoBrC10 extrait la TPTZ dans le décanol pour y former le composé $\overline{TPTZ(H_{0}BrC10)}_{7}$
- . cette réaction est concurencée par la protanation de la TPT2 qui est désextraite sous forme HTPT2⁺ et H_2TPT2^{2+} .

Nous pouvons maintenant étudier l'extraction des lanthanides et actinides trivalents par la TPTZ et l'HxBrC₁₀.

11.3.2. Extraction de lanthanides et d'actinides trivalents

Avant d'étudier l'influence de la TPTZ sur les propriétés extractantes de l'HABRC10, nous allons déterminer les mécanismes d'extraction des lanthanides et actinides trivalents par l'HABRC10.

II.3.2.a. Extraction par l'acide a-bromocaprique

Les résultats expérimentaux sont présentés sous forme de figures au paragraphe suivant (afin de mettre clairement en évidence le rôle spécifique de la TPTZ) figures 23b.

Compte-tenu des rappels théoriques (§.II.2.2.b) faits au chapitre précédent, on interprète de façon classique le mécanisme d'extraction :

- . les nitrates ne participent pas à l'extraction, mais ils complexent ${\rm Am}^{3+}$ et Eu $^{3+}$ en phase aqueuse.
- . les courbes représentatives des variations de log D en fonction du pH sont des droites de pente 3, il y a donc trois ions H^+ échangés par cation extrait.
- . de même, l'influence de la concentration en HøBrC₁₀ montre qu'il y a trois molécules d'extractant par cation dans le complexe extrait.

Le mécanisme d'extraction est donc :

$$M^{3+} + 3 HaBrC_{10} \neq M(\alpha BrC_{10})_3 + 3 H^+$$
 (1)

Nous avons optimisé les constantes d'extraction à partir des résultats des figures 24 ne faisant pas intervenir la TPTZ (les constantes d'extraction sont identiques pour l'américium et l'europium) :

Colog Kex = 9.6
$$\pm$$
 0.3 M = Am ou Eu

II. 3. 2. b. Extraction par l'acide a-bromocaprique et la TPTZ

La présence de TPTZ en concentration suffisante augmente sélectivement le coefficient de partage de l'américium par rapport à l'extraction par l'HoBrC10 seul. Il y a donc extraction synergique (§.II.2.2.e.). Le spectre d'absorption du néodyme en phase organique est modifié par l'adjonction de TPTZ (voir annexe]]ce qui confirme la formation d'un complexe mixte en phase organique. Dans nos expériences, nous avons utilisé du KNO₃ molaire pour maintenir constante la force ionique.

Les courbes représentatives des variations du logarithme de D en fonction de pNO_3^- (figure 23a) sont des droites horizontales pour $pNO_3^- > 1$ ce qui démontre qu'aucun ion nitrate ne participe à l'extraction. La légère diminution des coefficients de partage avec l'augmentation de la concentration en nitrate jusqu'à 1 mole parlitre, s'explique bien par la formation de NNO_3^{2+} (M = Am ou Eu) en phase aqueuse.

FIGURE 23α : INFLUENCE DE LA CONCENTRATION DES NITRATES SUR L'EXTRACTION DE LANTHANIDES ET D'ACTINIDES TRIVALENTS PAR LA TPTZ ET L'ACIDE α-BROMOCAPRIQUE DANS LE DECANOL

 $T = 23 \pm 2^{\circ}C$ Les courbes théoriques sont tracées avec $D_0^{TPTZ} = 82$ $pKa_1^{TPTZ} = 3,2 ; pKa_2^{TPTZ} = 2,7$ $log \beta_1^{NO3} = 0,4 ; Log \beta_1^{AmTPTZ} = 4,22$ colog k = 1,7 ; colog Kex₁ = 9,6 colog Kex₂ = 3,1 ; colog Kex₂ = 3,9

Le complexe extrait a donc pour formule ;

$$(M(TPTZ)_{x}(\alpha BrC_{10})_{3}(H\alpha BrC_{10})_{v})_{z}$$

Aux concentrations utilisées, la salinité de la phase aqueuse a donc peu d'influence sur les valeurs des coefficients d'extraction.

Les courbes représentatives des variations de log D en fonction du pH (figure 23b) sont des droites de pente 3 ce qui confirme la formule ci-dessus : 3 molécules d'HœBrC₁₀ échangent au total 3 ions H⁺ par ion M³⁺ extrait. FIGURE 23b : INFLUENCE DU pH SUR L'EXTRACTION DE LANTHANIDES ET D'ACTI-NIDES TRIVALENTS PAR LA TPTZ ET L'ACIDE α-BROMOCAPRIQUE DANS LE DECANOL

Les résultats reportés figure 23c montrent qu'on réalise une séparation de groupe Am^{3+} , Cm^{3+}/Eu^{3+} , Nd^{3+} , Tb^{3+} , Yb^{3+} entre les lanthanides et les actinides trivalents.

 $\frac{\text{FIGURE 23c}}{\text{LA TPT2 ET L'ACIDE } \alpha-\text{BROMOCAPRIQUE DANS LE DECANOL}}$

Log D $T = 23 \pm 2^{\circ}C$ I = 1 M (KNO₂) [H=B=C w], • 1 H 1 PTZ 1. + 0.1 P Courbes théoriques tracées avec $D^{TPTZ} = 8,2$; colog k = 1,7 Nd pKa1 = 3,2; colog Kex1 = 9,6 Tb a Y۶ $pKa_{q}^{TPTZ} = 2,7$; colog Kex_q = 3,1 pour les actinides; log $\beta_1^{NO3} = 0,4$; colog Kex₂ = 3,9 pour les lanthanides $\log \beta_1^{\text{AmTPTZ}} = 4,22$ 1,5 рH

A pH ct concentration totale en HoBrC₁₀ fixés, $[TPTZ]_t$ est proportionnel à [TPTZ]. On déduit donc simplement des variations de D cn fonction de $[TPTZ]_t$ (figure 23d) que la courbe représentative des variations de log D en fonction de colog [TPTZ] est une droite de pente - 1 dans le domaine 1,5 \leq colog $[TPTZ] \leq$ 3,5:1'extraction d'un cation s'accompagne donc de l'extraction d'une molécule de TPTZ ; le complexe extrait est donc de formule :

 $((MTPTZ)(\alpha BrC_{10})_3, (H\alpha BrC_{10})_y)_z$

FIGURE 23d : INFLUENCE DE LA CONCENTRATION EN TPTZ SUR L'EXTRACTION DE LANTHANIDES ET D'ACTINIDES TRIVALENTS PAR L'ACIDE α-BRONDCAPRIQUE DANS LE DECANOL.

 $T = 23 \pm 2^{\circ}C$, $I = 1 M (KNO_3)$

Courbes théoriques tracées avec $p_{0TPTZ}^{TPTZ} = 82$ $pKa_1^{TPTZ} = 3,2$; colog k = 1,7; $pKa_2^T = 2,7$; colog $Kex_1 = 9,6$ $log \beta_1^{NO}3 = 0,4$; colog $K_{2}^{Am} = 3,1$; $log \beta_1^{AmTPTZ} = 4,22$ colog $Kex_2^{Eu} = 3,9$

A faible concentration en TPT2, l'extraction de M(œBrC₁₀) par l'HœBrC₁₀ seul n'est plus négligeable devant l'extraction synergique. Aux fortes concentrations en TPT2, celle-ci précipite.

L'influence de la concentration en HoBrC₁₀ est plus difficile à interpréter (figure 23e).

 $T = 23 \pm 2^{\circ}C, \quad I = 1 \text{ M}(\text{KNO}_3)$ Courbes théoriques tracées avec $p_0^{TPTZ} = 82$ $pKa_1^{TPTZ} = 3,2 ; \text{ colog } k = 1,7$ $pKa_2^{TPTZ} = 2,7 ; \text{ colog } Kex_1 = 9,6$ $log \beta_1^{NO3} = 0,4 ; \text{ colog } Kex_2^{Am} = 3,1$ $log \beta_1^{AmTPTZ} = 4,22 \text{ colog } Kex_2^{Eu} = 3,9$

A pH et [TPT2] constants si la concentration en HoBrC10 est trop faible, les coefficients de partage ne dépendent pas de [HoBrC10] il s'agit donc d'un autre mode d'extraction par la TPT2 mais sans HoBrC10; la faiblesse des coefficients de partage ne nous a par permis d'étudier ce mécanisme. On a l'impression que les variations de log D en fonction de colog [HoBrC10] peuvent indiquer la participation de 3 molécules de HeBrC10 par cation extrait pour colog [HoBrC10] > 0,5 ; le complexe extrait serait donc :

 $\overline{(MTPTZ)(\alpha BrC_{10})_3)_7}$

 $\frac{FIGURE\ 236}{TRACTION\ DE\ LA CONCENTRATION\ EN\ EUROPIUM\ SUR\ L'EXTRACTION\ DE\ LANTHANIDES\ ET\ D'ACTINIDES\ TRIVALENTS\ PAR LA TPTZ\ ET\ L'ACICE\ \alpha-BRONDCAPRIQUE\ DANS\ LE\ DECANOL$

.

$$T = 23 \stackrel{+}{=} 2^{\circ}C, \ T = 1 \ M(KNO_3)$$
Courbes théoriques tracées avec $D_0^{TPTZ} = 82$
 $pKa_1^{TPTZ} = 3,2$; colog $k = 1,7$
 $pKa_2^{TPTZ} = 2,7$; colog $Kex_1 = 9,6$
 $log B_1^{NO_3} = 0,4$; colog $Kex_2^{Am} = 3,1$
 $log B_1^{AmTPTZ} = 4,22$; colog $Kex_2^{Eu} = 3,9$
 $log B_1^{ImTZ} = 4,22$; colog $Kex_2^{Eu} = 3,9$
 $log D_{ph + 350}$
 $contention des explanes entropients of the rest of the r$

A concentrations plus élevées en acide α -bromocaprique, l'association TPTZ(H α BrC $_{10}$)₂ modifie l'allure des courbes d'extraction et ne permet pas de déduite simplement le nombre de molécules d'extractant participant au complexe en phase organique. Les courbes représentatives des variations de log D en fonction du logarithme de la concentration en europium, tous les autres paramètres étant gardés fixes (figure 23f) permettent de conclure que un seul complexe, de formule $(\overline{MTPT2})(\alpha BrC_{10})_3$ est reponsable de l'extraction. En effet, pour $[Eu(III)]_t < 0,5 \ 10^{-2}$ M le coefficient de partage D ne dépend pratiquement pas de la concentration en métal, ce qui montre que le complexe extrait ne contient qu'un atome de métal. Quand toute la TPTZ est consommée par le métal extrait ($[Eu]_t \approx [TPTZ]_t$), on observe une chute nette de D ce qui confirme que le complexe extrait comporte une molécule de TPTZ par atome d'europium. Un excès de métal par rapport à la TPTZ est extrait par l'H α BrC₁₀ seul qui est également en excès par rapport à la TPTZ.

Ainsi, l'étude des pentes des courbes représentatives des variations de log D^M (M = Am et Eu) en fonction du logarithme de la concentration des diverses espèces chimiques (figures23) montrent que l'américium e. l'europium sont extraits suivant les mécanismes :

$$M^{3+} + 3 HaBrC_{10} \neq M(aBrC_{10})_3 + 3 H^*$$
 (1)

et

$$M^{3+} + 3 H\alpha Br C_{10} + TPTZ \neq M(TPTZ) (\alpha Br C_{10})_3 + 3 H^{4}$$
 (2)

régis par les constantes Kex₁ (§.II.2.2.a) et :

$$\operatorname{Kex}_{2} = \frac{\left[\underbrace{\operatorname{MTPTZ} (\operatorname{\alpha BrC}_{10})_{3}}_{\left[\underbrace{\operatorname{M}^{3+}}_{2} \right]} \left[\underbrace{\operatorname{TPTZ}}_{\operatorname{TPTZ}} \right] \left[\underbrace{\operatorname{H\alpha BrC}_{10}}_{10} \right]^{3}$$
(3)

Les lanthanides d'une part (Nd, Eu, Tb, Yb), et les actinides d'autre part (Am, Cm) ont des coefficients de partage très proches.

Toutes les courbes théoriques des figures 23 sont tracées à l'aide de l'expression :

$$\log D^{M_{2}} = \log \operatorname{Kex}_{1} + 3 \log \left[\operatorname{HoBrC}_{10} \right] + 3 \operatorname{pH} + \log(1 + \left[\operatorname{TPTZ} \right] \frac{\operatorname{Kex}_{2}}{\operatorname{Kex}_{1}} - \log(1 + \beta_{1}^{MNO_{3}} \left[\operatorname{NO}_{3}^{-} \right] + \frac{\beta_{1}^{MTPTZ}}{D_{0}^{TPTZ}} \left[\operatorname{TPTZ} \right] \right)$$
(4)

où pKa₁ = 3,8 et pKa₂ = 2,7 (§.I.2.2.d.)

log B ^{MANO3}	= 0,4	(tableau II)
$\log \beta_1^{AmTFTZ}$	= 4,22	(§.I.3.1.c.)
colog k	= 1,7	(§.II.2.1.b.)
colog Kex ₁	= 9,6	(§.II.2.2.a.)
	-	

colog $\overset{\text{Am}}{\text{Kex}_2}$ = 3,1 et colog $\overset{\text{Eu}}{\text{Kex}_2}$ = 3,9 optimisés

L'expression (4), établie à partir de (voir annexeIII.10)

$$D^{M} = \frac{\left[M(\alpha BrC_{10})_{3}\right] + \left[MTPTZ(\alpha BrC_{10})_{3}\right]}{\left[M^{3+}\right] + \left[MNO_{3}^{2+}\right] + \left[MTPTZ^{3+}\right]}$$
(5)

tient compte de la rétention de M en phase aqueuse, par formation des complexes nitrate et TPTZ.

Remarques

1. Pour les fortes concentrations en TPTZ, les coefficients de partage de M (M = Am et Eu) sont plus faibles que les prévisions théoriques ce qui pourrait s'expliquer par la formation de $\overline{\text{TPTZ}}$ HoBrC₁₀ en plus de $\overline{\text{TPTZ}}$ (HoBrC₁₀)₂.

2. Les courbes représentatives des variations de log D en fonction du log de la concentration de chaque espèce chimique (figures23) ne sont pas des droites quand plusieurs réactions chimiques ont lieu simultanément; suivant les domaines, on observe des réactions que nous écrivons à l'aide des espèces majoritaires en solution :

$$M^{3+} + 3 \overline{H\alpha}BrC_{10} \neq \overline{M(\alpha}BrC_{10})_3 + 3 H^{+}$$

$$M^{3+} + \overline{TPTZ(H\alpha}BrC_{10})_2 + \overline{H\alpha}BrC_{10} \neq \overline{MTPTZ(\alpha}BrC_{10})_3 + 3 H^{+}$$

$$M^{3+} + 1,5 \overline{TPTZ(H\alpha}BrC_{10})_2 \neq \overline{MTPTZ(\alpha}BrC_{10})_3 + (3-0,5x) H^{+} + 0,5 H_x TPTZ^{X+}$$

En effet, quand on observe le synergisme, les extractants sont généralement associés sous forme TPT2(H α BrC₁₀)₂, la TPTZ étant ainsi majoritairement dans la phase organique. Quand diminue le pH, la TPTZ est progressivement desextraite en phase aqueuse sous forme HTPTZ⁺ puis H₂TPTZ²⁺. Quand cette désextraction de la TPTZ est complète, c'est l'extraction par l'H α BrC₁₀ seul qui prédomine.

3.3. Discussion sur l'extraction par la TPT2 et l'acide α-bromocaprique.

Lors de l'extraction synergique par la TPTZ et l'HuBrC₁₀ dans le décanol, la sélectivité pour l'américium (§.II.2.2.f.)

$$\log \frac{Am}{Kex_2} - \log \frac{Eu}{Kex_2} = 0,8$$

est inférieure à la sélectivité trouvée en phase aqueuse (tableau XI).

Cette différence traduit le fait que les liaisons entre le cation et les atomes donneurs ne sont pas indépendantes les unes des autres. En effet, cette moindre sélectivité doit être attribuée à une diminution du caractère covalent de la liaison Am(III)-TPTZ : le nombre de coordination de l'américium trivalent est de 8 ou 9, les atomes d'oxygène des αBrC_{10}^{-} occupent six positions de coordination de Am(III) dans le complexe $\overline{AmTPTZ}(\alpha BrC_{10})_3$. Les liaison oxygène-Am(III), plus stables que les liaisons azote-Am(III) provoquent certainement un encombrement stérique pour la coordination de la TPTZ (tridentate, au plus) ; ce qui éloigne la TPTZ de Am et diminue donc le caractère covalent de la liaison Am(III)-TPTZ. Autrement dit, la substitution de molécules d'eau de la première sphère de coordination du cation Am³⁺, par des anionsæbromocaprates augmente la longueur de la liaison Am³⁺-azote de la TPTZ et cette longueur est supérieure à la valeur habituelle de 2,5 Å (tableau VI).

Contrairement à ce que nous avons trouvé en phase aqueuse (fig. 13), en phase organique, la stabilité du complexe contenant une molécule de TPTZ, ne varie pas d'un élément lanthanide à l'autre (figure 23c). Ce comportement est favorable à une séparation de groupe**s**.

Une séparation de groupes par extraction liquide-liquide est possible puisque les lanthanides d'une part, les actinides trivalents d'autre part, ont même coefficient de partage : par exemple, avec un mélange d'H α BrC₁₀ molaire et de TPTZ 0,1 molaire dilués dans le décanol à partir d'une phase aqueuse de pH 2,3.

D'un point de vue pratique, le pH est un peut trop élevé pour utiliser ce système dans l'industrie nucléaire. Nous allons donc étudier un autre système où le HDNNS remplace l'H&BrC₁₀. Egalement, on constate que, comme pour l'extraction du cobalt par l'acide hexanoique dans l'hexanol, aucume molécule neutre de HaBrC₁₀, ne participe à l'extraction de M^{3+} dans le décanol (§ II.3.1.a.). Les alcools empèchent donc les molécules neutres d'acides carboxyliques de se lier en seconde sphère du complexe extrait, comme ils le font dans les diluants inertes (§ II.3.1.a.) dont les molécules ne sont pas susceptibles d'être maintenues en seconde sphère de coordination par liaisons hydrogène. The second second second in the

11.4. EXTRACTION PAR L'ACIDE DINONVLNAPHTALENE SULFONIQUE ET LA TPTZ DILUES DANS LE t-BUTYLBENZENE

11.4.1. Propriétés des extractants

II.4.1.a. Bibliographie

Le HDNNS est polymérisé [154] ; le degré de polymérisation dépend du diluant utilisé mais non du métal extrait [154].

La concentration micellaire critique est de l'ordre de 10^{-6} M /[154_7]. Les lanthanides (cérium, europium, thullium) et l'américium trivalents sont extraits sous forme $\overline{M(DNNS)}_{3}(HDNNS)_{p-3}$ dans l'heptane ; les constantes d'extraction sont pratiquement identiques : log $\frac{Kex}{p}$ (défini par la relation (20) du §.II.2.2.c) vaut respectivement 1,77 ; 1,75 ; 1,56 et 1,75 (mesurées dans du HDNNS 0,1 M).

Suivant les méthodes expérimentales employées, le degré de polymérisation, p, de $\overline{M(DNNS)}_{S}(HDNNS)_{p-S}$ est compris entre 7 et 24 $_$ 154_7, les micelles - ou plus exactement les micelles inverses - sont des sphères ou des sphères déformées en élipsoîdes $_$ 154_7. Le HDNNS extrait 8 molécules d'eau par molécule de HDNNS $_$ 177_7 qui occupent un volume d'eau, au centre (supposé sphérique) de la micelle inverse, de (239 p) Å³ $_$ 177_7 soit 3350 Å³ pour une micelle inverse à 14 molécules de HDNNS.

Le rayon de cette goutelette d'eau est alors de 9,28 A pour une micelle inverse à 14 molécules de HDNNS. Comme la longueur d'une molécule de HDNNS (dans les micelles inverses) est de l'ordre de 7,7 $\stackrel{+}{-}$ 0,5 Å $\underline{/}$ 177 $\overline{/}$, nous en déduisons le rayon total d'une micelle : $(7,7 + 3,85 \text{ p}^{\overline{1/3}})$ Å, soit de 15,0 à 19,5 Å suivant le degré de polymérisation, p.

On a représenté une molécule de HDNNS (figure 24a) dont on déduit le schéma (figure 24b) d'une micelle inverse de degrés de polymérisation 14, dans laquelle (d'après / 177 7) les chaînes nonyles sont repliées sans pointer vers l'extérieur de la micelle inverse, dans le diluant. ŝ

FIGURES24 : SCHEMA D'UNE MICELLE DE HONNS

Figure 24a : DESSIN D'UNE MOLECULE DE HONNS d'après [177]. .

Figure 24b : SCHEMA D'UNE MICELLE INVERSE SPHERIQUE

Nous avons construit ces schémas à partir de données de la littérature [177, 154]; ils permettent de se faire une idée de l'arrangement spatiale des molécules dans la micelle inverse et des insertions (ou échanges) possibles : nous utiliserons ces données pour discuter nos résultats expérimentaux.

II.4.1.b. Extraction de K⁺ et Na⁺ par le HDNNS

Nous savons, d'après la littérature (§.II.4.1.a.) que HDNNS et KDNNS sont polymérisés. Nous avons cependant besoin de connaître dans quelles conditions l'échange entre H^+ et K^+ s'effectue. C'est pourquoi on a étudié l'extraction de K^+ (et Na⁺) par la méthode de saturation progressive en K (ou Na) de la phase organique. Le pH de phases aqueuses lavant successivement une même phase organique (§ II.2.2.d. deuxième méthode), varie linéairement avec le nombre de lavages comme le montre la figure 25.

Les constantes d'extraction de K⁺ et Na⁺ (définies par la relation (20) du § II.2.2.c.) ont été mesurées pour diverses concentrations en ion alcalin et en extractant qui est une généralisation du modèle d'extraction (18) donné dans la littérature, par la théorie que nous avons développée au § II.2.2.b. où les micelles sont considérées comme une 3ème phase. Notons que les résultats (voir annexe II) sont ainsi exploitables à l'aide d'une constante uniquement définie pour des faibles concentrations d'ions métalliques.

T = $23 - 2^{\circ}C$ [HDNNS] initial = 0,1 M Volume de chaque phase : 5 ml Chaque phase aqueuse est du KNO₃ 1 M La courbe est tracée pour colog k = 0,74 (voir la figure 21).

FIGURE 25 : EXTRACTION DE K⁺ PAR LE HONNS DANS LE t-BUTYLBENZENE

II.4.1.c. Rétention de la TPTZ par le HDNNS dans le t-Butylbenzène

La solubilité du t-butylbenzène en phase aqueuse et son absorption de la lumière ultra-violette ne permettent pas de doser la TPTZ par absorptiométrie dans l'ultra-violet. La faible solubilité de la TPTZ ne permet pas, non plus, de la doser par pH métrie.

Nous avons alors essayé de la doser par formation du complexe coloré Fe(TPTZ) $_{2}^{2+}$. La constante de formation de ce complexe (§ I.1.4.a.) montre qu'il est théoriquement possible de doser la TPTZ 10^{-5} M avec du fer 0,1 M; or nous avons constaté expérimentalement que le dosage est très imprécis, l'absorbance mesurée est bien inférieure aux valeurs attendues. Il se forme donc probablement le complexe Fe TPTZ²⁺, dont l'absortivité molaire est négligeable par rapport à celle de Fe(TPTZ)²⁺. Comme le complexe Fe TPTZ²⁺ est majoritaire aux faibles concentrations en TPTZ, le dosage est trop imprécis, on ne peut donc étudier quantitativement le partage de la TPTZ en fonction de la concentration en HDNNS.

Nous avons néanmoins pu obtenir les résultats qualitatifs suivants :

 en l'absence de HDNNS, le coefficient de partage de la TPTZ dans le t-butylbenzène, à pH assez basique pour éviter la formation de HTPTZ⁺ et H₂TPTZ²⁺, est voisin de 1, nous avons estimé :

$$-0,7 \leq \log D^{\text{TPTZ}} \leq 0$$

. le HDNNS augmente considérablement la solubilité de la TPTZ en phase organique, par exemple, une solution 0,1 M de HDNNS retient partiellement la TPTZ en phase organique pour une phase aqueuse de pH = 0, ce qui correspond à une augmentation de D^{TPTZ} d'un facteur 10^4 à 10^5 .

11.4.2. Extraction de lanthanides et d'actinides trivalents par L'HONNS

£

Les réactions chimiques entre la TPT2 et le HDNNS ne pouvant être prévues quantitativement (§.II.4.1.c.) aussi simplement que dans le cas du H α BrC₁₀ (§.II.3.1.b.), nous les déterminerons par l'interprétation des résultats d'extraction d'Am³⁺ et Eu³⁺.

Le HDNNS extrait les ions Am³⁺ et Eu³⁺ sans sélectivité pour l'un vis-à-vis de l'autre (figure 26). Nous avons vérifié les résultats classiques pour l'extraction par le HDNNS, échangeur cationique polymérisé : la courbe représentative des variations de log D en fonction de colog [HDNNS]_t est une droite de pente - 1, alors que la courbe représentative des variations de log D en fonction du pH est une droite de pente 3.

 $\frac{FIGURE \ 26}{t-BUTYLBENZENE}: EXTRACTION DES IONS \ Am^{3+} et \ Eu^{3+} PAR \ LE \ HDNNS \ DANS \ LE \ t-BUTYLBENZENE \ T = 23 \ \pm \ 2^{\circ}C$

Ainsi, les variations des coefficients de partage des éléments étudiés ici en fonction du pH et de la concentration en HDNNS (figure 26) montrent que l'équilibre de partage (voir § II.2.c.) est ;

$$M^{3+} + (HDNNS)_p \ddagger M(DNNS)_3 (HDNNS)_{p-3} + 3 H^+$$
 (1)

÷

La constante d'extraction (définie §.II.2.2.c. formules (20) et (31)),

$$\log \frac{\text{Kex}}{\text{p}} = 1,3 \pm 0,2$$

est légèrement inférieure à celle mesurée dans l'heptane (§.II.4.1.a.); cette petite différence n'a rien d'étonnant, étant donné :

. la différence de nature des diluants,

. la différence des provenances des HDNNS utilisés.

11.4.3. Extraction par la TPT2 et le HDNNS

L'interprétation quantitative d'un système d'extraction à plusieurs extractants dont l'un est polymérisé n'est pas classique : nous n'avons pas trouvé, dans la littérature, de théorie permettant de prévoir l'extraction par de tels systèmes quand les extractants réagissent entre eux pour s'associer. Nous allons donc, dans un premier temps, faire une interprétation qualitative de nos résultats expérimentaux, puis nous proposerons une théorie pour permettre une interprétation quartitative de ce type d'extraction.

II.4.3.a. <u>Résultats expérimentaux et interprétation qualitative</u>

Alors que la TPTZ a peu d'affinité pour le t-butylbenzène sec ou saturé d'eau, l'adjonction de HDNNS la solubilise. On en déduit qu'il existe une réaction d'association entre la TPTZ et le HDNNS. Le mélange HDNNS + TPTZ dans le t-butylbenzène extrait l'américium et l'europium (figure 27a).

FIGURE 27a : EXTRACTION DE LANTHANIDES ET D'ACTINIDES TRIVALENTS PAR LA TPTZ ET LE HDNNS DANS LE L-BUTYLBENZENE. Mise en évidence du synergisme T = 23±2°C

-

$f_D = \frac{D^{Am}}{D^{Ew}}$	+	
Am	0	
Eυ	•	
log h:		7, 15
log k ₁	0,58	
log <u>K</u> Am P	0,03	
log <u>KEu</u> P	- 1, 27	
tog <u>Ki</u> P	0,43	

L'addition de TFTZ en faible quantité (moins de 20) provoque une nette diminution des coefficients de partage ; en quantité plus importante, la TFTZ provoque une nette sélectivité de l'extraction en faveur de l'américium. L'effet antagoniste de la TFTZ peut être dû à la modification des micelles (forme, degrés de polymérisation) ou du blocage des ronctions échangeuses d'ion par la formation de TFTZ (HDNNS)_n (n = 1 ou 2 vraisemblablement) en phase organique.

La sélectivité révèle la présence formelle du cation HTPTZ³⁺ dans une entité extrait en phase organique.

L'influence de la concentration en TPTZ, tous les autres paramètres étant fixés (figure 27b) confirme ces résultats et ces interprétations. Une chute brutale des coefficients de partage a lieu quand la concentration en TPTZ atteint la moitié de celle en HDNNS. On en déduit que TPTZ (HDNNS)_n, où n > 2, doit se former en phase organique (n = 2 si la quantité de TPTZ en phase aqueuse n'est pas prépondérante dans ces conditions).

FIGURE 276 : EXTRACTION DE LANTHANIDES ET D'ACTINIDES TRIVA-LENTS PAR LA TPTZ ET LE HDNNS DANS LE &-BUTYL-BENZENE

$f_0 = \frac{D^{Am}}{D^{Eu}}$	+	
Am	0	—
Eυ	•	
log k ₂		7, 15
log kı	8,58	
log KAm P	0,03	
Log KEu P	- 1, 27	
log <u>Ki</u> P	0,43	

FIGURE 27c: EXTRACTION DE LANTHANIDES ET D'ACTINIDES TRIVALENTS PAR LA TPTZ ET LE HDNNS DANS LE t-BUTYLBENZENE. Influence de la concentration en nitrates. T = 23 ⁺ 2°C

Les nitrates à des concentrations supérieures à 0,3 M complexent l'américium et l'europium en phase aqueuse et c'est leur seule influence dans le mécanisme d'extraction (figure 27c).

Les courbes représentatives de log D^{Eu} en fonction du pH (figures 27d) sont, aux faibles pH, des droites de pente 3 ; quand le pH augmente, simultanément à l'apparition de la sélectivité de l'extraction en faveur de l'américium, la pente de la droite diminue jusqu'à atteindre environ 2 ; alors que pour l'américium, la pente reste environ 3 même quand apparaît la sélectivité pour l'américium, puis, aux pH plus élevés où la sélectivité est maximale, la pente diminue également.

On peut interpréter ces courbes de la façon suivante :

- . à pH très acide, la TPTZ est majoritairement sous forme protonée en phase aqueuse, il n'y a pas de sélectivité pour l'américium et on observe le mécanisme d'extraction par le HDNNS seul (pente de 3 en fonction du pH) déjà étudié (§ II.4.2.),
- quand le pH augmente, la TPTZ est extraite par le HDNNS en phase organique où elle se lie à l'américum dont elle rend l'extraction sélective, son extraction par le HDNNS bloque l'extraction par le HDNNS seul (ce qui explique la diminution de la pente pour D^{Eu}). Le mécanisme d'extraction prépondérant est le synergisme qui a un pouvoir extractant moins fort pour l'europium par rapport au

mécanisme par le HDXNS seul ; pour l'américium, ce pouvoir extractant est à peu près identique pour les deux mécanismes d'extraction (ce qui explique que, contrairement à celle de l'europium, la pente de log D^{Am}, ne diminue pas), Ē

 enfin, à pH plus élevé encore, la TPTZ est complètement extraite dans la phase organique, la sélectivité de l'extraction pour l'américium est alors maximale. D'autre part, un deuxième composé d'addition entre le HDNNS et la TPTZ se forme puisque la

pente de la courbe représentative des variations de log D^{Am} en fonction du pH diminue.

A partir de ces constatations, on peut établir des modèles théoriques, tester leur validité ; nous le ferons après avoir examiné l'ensemble des résultats expérimentaux.

Les actinides trivalents d'une part (américium et curium) ont mêmes coefficients de partage, c'est aussi le cas des lanthanides (cérium, europium, gadolinium, terbium, ytterbium), mais ces derniers sont moins bien extraits que les actinides (figure 27e) ; ainsi du HDNNS 0,1 M et de la TPTZ 0,1 M dilués dans du t-butylbenzène (figure 27d) peuvent extraire sélectivement l'américium et le curium d'une solution d'acide nitrique 0,3 M environ contenant des lanthanides sans qu'il soit nécessaire d'ajouter dans le système un sel ou un tampon. Ce système d'extraction est donc, dans son principe, plus performant que les systèmes existants (§ 11.1).

Les courbes représentatives des variations de log D en fonction de colog [HDNNS]_t (figure 27f) sont des droites de pente - 1 dans le domaine où l'extraction synergique est prédominante, ce qui correspond au cas où le HDNNS n'est pas en excès. On en déduit que l'extractant reste polymérisé.

- 120 -

Les variations de log D en fonction de colog [TPTZ]_t (ou colog [HDNNS]) où [TPTZ]_t = [HDNNS]_t (figure 27g) confirment ce résultat.

FIGURE 27g : EXTRACTION DE LANTHANIDES ET D'ACTINIDES TRIVALENTS PAR LA TPTZ ET LE HDNNS DANS LE £-BUTYLBENZENE.

Influence des concentrations en TPTZ et HDNNS. T = 23 [±] 2°C

- 121 -

.

Pour des concentrations totales en extractants de 10^{-2} M, à pH fixé, la courbe représentative des variations de log D en fonction de colog [Eu]_t (figure 27h) est une droite horizontale pour colog [Eu]_t > 3 ce qui montre qu'il n'y a pas de modification du mécanisme d'extraction quand on augmente [Eu]_t. La saturation de la phase organique a lieu pour :

$$\frac{[\text{HDNNS]}_{\text{t}}}{[\text{Eu]}_{\text{t}}} = 0$$

correspondant à une chute brutale de log D.

Comme les NO_3^- ne participent pas au mécanisme d'extraction, il faut 3 DNNS⁻ pour neutraliser Eu³⁺ extrait ; on s'attend donc à une saturation de la phase organique pour [Eu]_t de l'ordre de $\frac{1}{3}$ 10⁻² M au maximum : la phase organique est en fait déjà saturée par :

(Eu (DNNS)₃ HDNNS₃) $_{p/6}$

comme le confirme l'intersection de la droite de pente + 1 (représentant log D = f (log [Eu]_t) pour [Eu]_t > 10^{-2} M) et de l'horizontale log D = 0. L'américium et l'europium ont mêmes mécanismes d'extraction (figure 27h).

II.4.3.b. Interprétation théorique et quantitative

Les résultats expérimentaux (§ II.4.3.a.) montrent qu'une réaction entre la TPTZ et le HDNNS diminue les propriétés extractantes de ce dernier. Cette réaction peut avoir deux origines :

- la TPTZ provoque la dépolymérisation de (HDNNS)_p ou, du moins, modifie de façon importante la nature des micelles,
- ou bien, la TPTZ, sans modifier de façon importante le degré de polymérisation, p, des micelles, bloque les fonctions échangeuses d'ions du HDNNS.

Une variation importante du degré de polymérisation des micelles (réaction du type 1 ci-dessus), se traduirait par l'existence d'une concentration analogue à la concentration micellaire critique (c.m.c.) pour laquelle les propriétés extractantes du HDNNS varieraient brusquement ; cela n'a jamais été le cas dans les conditions expérimentales où apparaissait la sélectivité de l'extraction en faveur de l'américium (§ II.4.3.a). D'autre part, l'influence de la concentration en extractants sur les coefficients de distribution (figures 27b, h, g) montre qu'ils forment un polymère.

On conclut donc que la TPTZ modifie les propriétés extractantes des micelles (HDNNS)_p essentiellement par blocage des fonctions acides sulfoniques (réactions du type 2 ci-dessus). D'autre part, l'apparition de sélectivité pour l'extraction de l'américium et la solubilisation de la TPTZ par le HDNNS, montrent qu'il s'agit d'une extraction de TPTZ suivant la réaction :

$$TPTZ + (HDNNS)_{p} + TPTZ (HDNNS)_{x} (HDNNS)_{p-x}$$
(2)

analogue au mécanisme classique ((18) du § II.2.2.c.) d'extraction par in polymère. Toutefois, comme nous l'avons déjà souligné (§ II.2.2.c.) cette réaction (2) n'est valable que pour de faibles proportions de TPT2 ; pour obtenir le blocage de tout l'échangeur cationique, il faut invoquer la formation de complexes successifs (de façon analogue à (21) du § II.2.2.c.) selon par exemple : ・Loreauguer)、

ent a tru

بسوت مققياته فينبر الالهلاف

TPTZ + (TPTZ (HDNNS_x)_{j-1}(HDNNS)_{p-x(j-1)}
$$\ddagger$$
 (TPTZ (HDNNS)_x)_j(HDNNS)_{p-xj} (3)
ce qui introduit au moins j constantes d'extraction ((22) du § II.2.2.c.)

ī

Nous avons déjà mis en évidence que les micelles se comportent, vis-à-vis de l'extraction des cations comme une 3ème phase. Nous allons montrer que cette théorie rend également compte de l'association entre le HDNNS et la TPTZ, car elle nous permet de reproduire quantitativement des résultats expérimentaux (§ II.4.3.a.) ; notons qu'en toute logique, cela ne prouve pas la validité du modèle proposé : nous en discuterons au paragraphe suivant.

Comme nous l'avons déjà indiqué, en l'absence de TPTZ (ou à très faible concentration en TPTZ) la réaction d'extraction ((18) du § II.2.2.c.)

$$M^{3+} + \overline{(HDNNS)}_{p} \ddagger \overline{M(DNNS)}_{3} (HDNNS)_{p-3} + 3 H^{*}$$
(4)

peut aussi s'écrire :

$$M^{3+} + H + M^{+} + 3 H^{+}$$
 (5)

où les espèces surlignées deux fois sont dans une 3ème phase ; Cette écriture (5) ne permet pas d'équilibrer explicitement l'équilibre de partage. Cela est dû au fait que les espèces polymérisées interviennent toujours avec un exposant 1, quelle que soit la stoechiométrie, dans l'expression de la loi d'action de masse (6), comme nous l'avons déjà signalé § II.2.2.c.

La constante de l'équilibre (5) s'écrit :

$$K_{1} = \frac{\left[M\right]^{3}}{\left[M^{3+}\right]\left[\overline{H}\right]}$$
(6)

De même, l'association TPTZ-HDNNS correspondrait à l'extraction de la TPTZ par le HDNNS suivant :

$$TPTZ + (HDNNS)_{p} \ddagger TPTZ (HDNNS)_{2} (HDNNS)_{p-2}$$
(7)

Cette écriture (7) doit être généralisée (§.II.2.2.c.) pour rendre compte de la saturation du HDNNS par la TPTZ selon :

$$TPTZ + \overline{H} \neq \overline{TPTZ(HDNNS)}_{Z}$$
(8)

£

c'est-à-dire :

$$\frac{\text{TPTZ} + (\overline{\text{TPTZ}(\text{HDNNS})_2}_{i-1}(\text{HDNNS})_{p-2(i-1)} \neq}{(\overline{\text{TPTZ}(\text{HDNNS})_2}_{i}(\text{HDNNS})_{p-2i}}$$
(9)

la constante de l'équilibre (8) est :

$$\overline{\overline{k}}_{1} = \frac{\left[\overline{TPTZ(HDNNS)}_{2}\right]}{\left[TPTZ\right]\left[\overline{H}\right]}$$
(10)

Quand la réaction (8) est pratiquement totale, la TPT2 peut encore être extraite selon :

$$TTTZ + \overline{TPTZ(HDNNS)}_{2} \rightleftharpoons \overline{TPTZHDNNS}$$
(11)

c'est-à-dire :

$$TPTZ + (TPTZHDNNS)_{i-1}(TPTZ(HDNNS)_{2})_{p-i+1} \neq$$

$$(TPTZHDNNS)_{i+1}(TPTZ(HDNNS)_{2})_{p-i-1} \qquad (12)$$

la constante de l'équilibre (11) est :

$$k_{2} = \frac{\left[\text{TPTZ} + \text{DNNS} \right]}{\left[\text{TPTZ} \right] \left[\text{TPTZ} + \text{DNNS} \right]_{2} \right]}$$
(13)

Alors, comme le montre l'interprétation qualitative des résultats expérimentaux (§.II.4.3.a.), l'extraction sélective de l'américium, s'explique par l'entrée de MTPTZ³⁺ dans la micelle où la TPTZ est déjà présente sous forme TPTZ(HDNNS)₂, soit la réaction :

 $M^{3+} + \overline{TPTZ(HDNNS)}_2 \neq \overline{MTPTZ} + 3 H^+$ (14)

c'est-à-dire, avec L = TPTZ et A = DNNS :

$$M^{3+} + \overline{(MLA_3)_{1-1}(L(HA)_2)_i(HA)_{p-2i-31+3}} \stackrel{2}{\leftarrow} \overline{(MLA_3)_1(L(HA)_2)_{i-1}(HA)_{p-2i-31+2}} + 3H^4$$
(15)

la constante de l'équilibre (14) est :

$$= \frac{[MTPT2][H]^{3}}{[M^{3+}][TPT2(HONNS)]}$$
(16)

÷

La loi d'action de masse appliquée aux réactions d'association ((10) et (13)) permet de calculer les concentrations des espèces libres à partir de [TPTZ] the [HDNNS] du pH et des pKa de la TPTZ.

Puis les constantes d'extraction (6) et (16) permettent par ailleurs de tracer les courbes théoriques :

$$\log D^{M} = \log \overline{k}_{1}^{M} + \log \left(1 + \frac{\overline{k}_{2}^{M}}{\overline{k}_{1}^{M}} | \overline{H} \right) + 3 pH - \log \left(1 + \beta_{1}^{MNO3} | NO_{3}^{-} \right] + \beta_{1}^{MPTZ} (TPTZ]$$
(17)

Nous avons pu optimiser les constantes d'association (10 et 13) et d'extraction (6 et 16), les autres constantes (pKa de la TPTZ, complexation de M^{3+} par NO₃ et TPTZ) étant connues par ailleurs. Les valeurs numériques suivantes :

$$\log \overline{k}_{1}^{\text{Eu}} = \log \overline{k}_{1}^{\text{Am}} = 0,43 \div 0.11$$
$$\log \overline{k}_{2}^{\text{Eu}} = -1,27 \div 0.15$$
$$\log \overline{k}_{2}^{\text{Am}} = 0,03 \div 0.11$$
$$\log \overline{k}_{1} = 8,58 \div 0.18$$
$$\log \overline{k}_{2} = 7,15 \div 0.15$$

avec lesquelles toutes les courbes des figures 27 ont été tracées, rendent compte de façon satisfaisante des résultats expérimentaux.

Remarque :

 A faibles concentrations en extractants (figure 27d) les valeurs expérimentales de log D sont plus faibles que les valeurs calculées : il est possible que le degré de polymérisation du système HDNNS-TPTZ t-butylbenzène diminue, à cause de la diminution de la concentration en eau dans le solvant ou éventuellement de la diminution de la concentration en extractants (cette dernière hypothèse est assez improbable car, à la concentration micellaire critique, on s'attend à une chute plus nette de log D).

2. Comme pour l'interprétation des résultats d'extraction par l'HoBrC₁₀ (Remarque 2 du § II.3.2.b.) si on écrit les réactions d'extraction à l'aide uniquement les espèces majoritaires en solution, les coefficients stoechiométrique 3 rendent compte des pentes des courbes représentatives des variatic 3 de log D en fonction du pH.

La réaction d'extraction :

- . $M^{3+} + (HA)_p \neq \overline{MA_3(HA)}_{p-3} + 3 H^{4}$ est en concurrence avec le blocage de HA sous forme L(HA)₂ dans les micelles où L est extrait en conséquence de la déprotonation de H_x^{X+} en phase aqueuse. On peut schématiquement rendre compte de l'équilibre de partage dans ce cas par la réaction :
- . $M^{3+} + (\overline{L(HA)}_2)_{p/2} \neq \overline{MA_3(L(HA)_2)}_{(p-3)/2} + 1.5 H_x^{X^+} + (3 1.5 x) H^+$ où la proportion de L entre les phases aqueuses et organiques est déterminée par le pH (et non par l'extraction de traces de M^{3+}) pour une concentratio: totale donnée de HA.

L'extraction synergique n'est effective que lorsque les extractants sont associés :

$$M^{3+} + (\overline{L(HA)}_2)_{p/2} \ddagger MLA_3(L(HA)_2)_{(p-3)/2} + 0.5 H_X^{x+} + (3 - 0.5 x) H^+$$

II.4.4. Discussion sur l'extraction par la TPTZ et le HDNNS

L'addition de TPTZ au HDNNS permet d'extraire sélectivement Am³⁺ d'une solution aqueuse de lanthanides trivalents dans le t-butylbenzène. Cette sélectivité est supérieure à celle obtenue avec l'HoßrC₁₀ log f_D max = 1,3 et 0,8 respectivement pour HDNNS et HoßrC₁₀, alors que la sélectivité mesurée en solution aqueuse est :

$$\log \frac{\beta_1^{Am}}{\beta_1^{Eu}} = 1,1$$

Une séparation de groupes actinides-lanthanides est effective à partir d'une solution 0,3 M d'acide nitrique : les coefficients de partage de l'américium et du curium sont de l'ordre de 2 alors que ceux des lanthanides sont 20 fois plus faibles, pour des concentrations en extractant (HDNNS et TPT2) de 0,1 M, la capacité du solvant est de 1 mole de métal extrait pour 6 moles de HDNNS sans qu'il y ait de changement de mécanisme. Ces caractéristiques sont suffisantes pour envisager une extraction à contre-courant (par batterie de mélangeurs-décanteurs ou par colonne pulsée). Dans son principe, un tel procédé est plus intéressant que les procédés existants de séparation actinides/lanthanides (§ 11.1.) pour les raisons suivantes :

- le pH de la phase aqueuse est suffisamment faible pour qu'il ne soit pas nécessaire de rajouter un tampon lequel contribue à augmenter les déchets de procédé,
- . les coefficients de partage des actinides trivalents sont suffisamment élevés pour qu'il ne soit nécessaire de rajouter en phase aqueuse, comme dans les procédés déjà connus, des sels qui sont des déchets gênants pour la vitrification de la solution aqueuse de produits de fission,

Nous avons montré que se superposent deux mécanismes d'extraction, l'un non sélectif :

$$M^{3+} + (L(HA)_2)_1 (HA)_{p-2i} \stackrel{*}{\downarrow} MA_3 (L(HA)_2)_1 (HA)_{p-2i-3} \stackrel{*}{\downarrow} 3H^*$$
 (1)

où on note L pour TPTZ et A pour DNNS ;

$$M^{3+}$$
 + (L(HA)₂)₁ (LHA)_j (HA)_{p-2i-j} \neq MLA₃ (L(HA)₂)₁₋₁ (LHA)_j (HA)_{p-2i-j-1} + 3 H⁺ (2)

où tant que l'extractant n'est pas saturé (c'est-à-dire k + $1 < \frac{P}{6}$), ses propriétés extractives ne dépendent que du nombre de fonctions échangeuses d'ion disponibles. Nous avons montré que cela revient à considérer les micelles comme une 3ème phase.

Nous avons vu qu'à partir des données de la littérature (§ II.4.1.a.) on pouvait représenter l'allure d'une micelle inverse (figure 24b) et des molécules de HDNNS qui la constituent (figure 24a). La place des chaînes nonyles dans ces micelles inverses n'est déduite que ŝ

de considérations stériques $\lfloor 177 \rfloor 7$; la taille, la forme et le degré de polymérisation diffèrent un peu suivant les auteurs et les méthodes expérimentales utilisées pour les étudier $\lfloor 154 \rfloor 7$. Malgré ces incertitudes, il est vraisemblable qu'une micelle inverse saturée d'eau soit grossièrement sphérique, les sulfonates sont dirigés vers le centre où il y a de l'eau (8 molécules d'eau par molécule de HDNNS), le naphtalène va pratiquement jusqu'à l'extérieur de la micelle inverse et l'espace libre entre les naphtalènes (figure 24b) est occupé par les chaînes nonyles qui ainsi ne pointent donc pas vers l'extérieur (d'après $\lfloor 177 \rfloor 7$).

De nombreuses configurations de ces chaînes sont plausibles et vraisemblablement possibles, selon les interactions entre les noyaux naphtalènes et les molécules d'insertion du diluant qui peut vraisemblablement pénétrer la micelle. A cause de sa taille (figure 24a) et de sa polarité, il est vraisemblable que les molécules de TPTZ entrent dans la micelle et se placent près des sulfonates pour former des liaisons acide-base ou des liaisons hydrogène et près des noyaux naphtalène en repoussant les chaînes nonyles car la solubilité de la TPTZ est très faible dans l'eau, dans le dodécane, dans le t-butylbenzène mais importante dans le benzène et les solvants benzéniques polaires tel le nitrobenzène (Tableau IX). Comme d'autre part, nous avons montré que la TPTZ protonnée avait tendance à former dans l'eau des agrégats (§ 1.2.4.), il semble bien que, à l'égal du HDNNS, HTPTZ⁺ ou H,TPTZ²⁺ aient la propriété de diminuer la tension interfaciale entre sa partie chargée et ses parties organiques (noyaux benzéniques) en formant le même type de composés : cela est une raison supplémentaire pour que des pyridyles de TPTZ soient rapprochés des sulfonates qui forment ainsi l'interface entre le centre aqueux de la micelle inverse et sa périphérie organique.

L'échange d'ion se ferait alors au centre de la micelle inverse où les fonctions sulfonates ont un comportement analogue à une résine échangeuse d'ions qui garde les mêmes propriétés extractantes tant qu'elle n'est pas saturée et tant que les micelles ne sont pas détruites ce qui permet de les considérer comme une 3ème phase.

Cette façon de voir des phénomènes rend bien compte de plusieurs constatations expérimentales : £

- . la TPTZ n'est pas retenux par le HDNNS dans le décanol, diluant défavorable à la polymérisation du HDNNS,
- le mélange TPTZ + HDNNS greffé sur de la silice se comporte visà-vis de l'extraction des cations, comme du HDNNS pur qui n'est, dans ces conditions, pas micellaire,
- l'absorption de la lumière violette par le HDNNS est diminuée en présence de TPTZ ce qui indique une liaison avec les noyaux naphtalènes,
- . la cavité interne de la micelle inverse (figure 24b) est bien plus grande que la première sphère de coordination des ions Am³⁺, il est donc exclu que les trois sulfonates soient coordinés autour du cation comme dans un complexe classique : l'ion Am³⁺ est plutôt accroché à la paroi constituée des sulfonates et cette paroi, même si elle est déformée par la présence de Am³⁺, ne peut l'entourer complètement, le cation reste ainsi plus accessible à la complexation par la TPTZ, contrairement à ce qui se passe avec les α -bromocaprates. Autrement dit, les liaisons entre les azotes de la TPTZ et Am³⁺ sont plus courtes que dans le complexe AmTPTZ(α BrC₁₀)₃ et donc plus covalentes. On constate effectivement que la sélectivité de l'extraction de l'américium vis-à-vis des lanthanides est supérieure avec le HDNNS qu'avec l'H α BrC₁₀.

Nous avons vérifié que ces considérations structurales sont stériquement possibles en construisant, à l'aide de modèles stéréochimiques éclatés, une portion de micelle, représentée figure 28.

FIGURE 28 : REPRESENTATION D'UN MOTIF AmTPTZ(DNNS) 3 DANS UNE MICELLE (AmTPTZ(DNNS) 3) (TPTZ(HDNNS) 2) (TPTZHDNNS) 2

and the second second second second

· · ·

CONCLUSION

÷

and the second s

5
Les propriétés complexantes de la TPTZ vis-à-vis des ions trivalents lanthanides et actinides, en solutions aqueuses ou organiques montrent que, comme d'autres ligands azotés tels les ions cyanures, azotures et l'orthophénantroline, la TPTZ est un réactif sélectif des actinides Am(III) et Cm(III), vis-à-vis des lanthanides trivalents : en solution aqueuse, la constante de formation, β_1 , du complexe AmTPTZ³⁺ est vingt fois plus grande que celle de NdTPTZ³⁺ alors que les ions métalliques Am^{3+} et Nd³⁺ sont de rayons ioniques voisins. Bien que les ions des éléments des séries 4f et 5f aient un caractère dur marqué, cet accroissement de stabilité des complexes de la TPTZ avec les actinides par rapport aux lanthanides peut être considéré comme la manifestation d'une constribution covalente dans la liaison Am(III)-azotes donneurs de la TPTZ. On n'observe pas ce phénomène avec les ligands oxygénés ou les ions florures, très durs qui forment des liaisons essentiellement ioniques avec les ions trivalents des séries f ; comme les atomes donneurs d'azote ou de soufre sont moins électronégatifs, les complexes qu'ils peuvent former avec les ions des éléments des séries f sont moins stables que les fluorures ou les complexes oxygénés. De ce point de vu la TPTZ présente l'avantage d'être parmi les ligands azotés, celui qui forme les complexes les plus stables avec les lanthanides et actinides trivalents tout en ayant, pour ces derniers, une sélectivité au moins égale à celle des autres ligands azotés,

Dans le méthanol les complexes $LnTPTZ^{3+}$ (où Ln représente un lanthanide) sont de type sphère interne ; dans l'eau, les complexes sont, semble-t-il, également de ce type. La TPTZ est alors tridentate par l'intermédiaire d'un azote de son noyau triazine et de deux pyridyls. La taille des ions des éléments des séries f est telle que la TPTZ est déformée quand elle les complexe, alors que le ligand libre ou protoné est pratiquement plan, les trois azotes étant conjugués ce qui explique, d'ailleurs, la relativement faible basicité de la TPTZ : $pKa_1 = 3,8 \stackrel{+}{-}0,2$ au lieu de 4,5 pour la bipyridine et 5 à 5,5 pour la pyridine.

On peut extraire ces complexes MIPTZ³⁺ dans un diluant organique à l'aide d'un échangeur cationique : acides carboxyliques,thiophosphoriques, dithiophosphoriques ou sulfoniques. Des dosages acide-base montrent que l'acide α -bromocaprique (H&BrC₁₀) est monomère alors que ses sels de sodium ou potassium sont polymérisés dans le décanol ; il peut y extraire la TPTZ sous forme TPTZ-(HuBrC₁₀)₂. Les ions trivalents des séries f sont extraits sous forme M(α BrC₁₀)₃ ou MTPTZ(α BrC₁₀)₃ ; le complexe mixte permet l'extraction synergique et sélective des actinides, mais la sélectivité est légèrement inférieure à celle de la complexation en phase aqueuse : la constante d'extraction de l'américium (ou du curium) est 6,3 fois plus grande que celle des lathanides (Eu, Nd, Tb ou Yb). Les anions carboxylates ont tendance, en effet, à gêner la coordination de la TPTZ, probablement en l'éloignant du cation métallique dans le complexe mixte.

L'acide dinonylnaphtalène sulfonique (HDNNS) est polymérisé dans les solvants peu polaires (concentration micellaire critique de l'ordre de 10⁻⁶ mole,1⁻¹) sous forme de micelles inverses. L'échange de Na⁺ ou K⁺ avec la fonction acide du HDNNS ne modifie pas les micelles. Bien que ce réactif soit utilisé depuis longtemps pour extraire les ions métalliques en très faibles concentrations, il n'existait pas de théorie satisfaisante pour rendre compte de ses propriétés quand il extrait des quantités notables (jusqu'à saturation) de métal ou plus généralement quand peut exister en phase organique une réaction chimique pouvant consommer la totalité des molécules d'échangeur cationique constituant les micelles inverses : par exemple le blocage des fonctions échangeuses de cation par la TPTZ. Par analogie à la théorie existante sur l'extraction par le HDNNS, de traces de métal, nous avons montré que le comportement de ce réactif dans le t-butylbenzène en présence de TPTZ et de cations à des concentrations pouvant aller jusqu'à la saturation de la phase organique, pouvait s'interpréter en exprimant, dans la loi d'action de masse, la concentration de l'extractant à la puissance 1 quelle que soit la stoechiométrie de l'équilibre chimique considéré. Autrement dit, l'équilibre de partage synergique doit s'écrire :

$$M^{3+} + (L(HA)_2)_i(LHA)_j(HA)_{p-2i-j} \neq MLA_3(L(HA)_2)_{i-1}(LHA)_j(HA)_{p-2i-j-1} + 3 H^+$$

les espèces surlignées sont en phase organique, p est le degré de polymérisation, L = TPTZ, A = DNNS, M est un ion trivalent

d'un élément des séries f. L'échange cationique s'accompagne donc d'un réarrangement interne à la micelle inverse où la THTZ bloque des fonctions échangeuses d'ion de HDNNS.

On peut rendre compte de cet équilibre de partage en considérant les micelles inverses comme une nouvelle phase : une troisième phase dispersée dans le diluant organique et dont le volume est la somme des volumes de chaque micelle inverse ; ce qui simplifie beaucoup les écritures et les raisonnements tout en rendant bien compte du fait que les propriétés d'un site échangeur d'ion ne sont pas modifiées notablement par l'état de ses voisins. Les micelles inverses se comportent donc comme des petits grains de résine échangeuse d'ions dispersés dans un diluant.

D'un point de vue stérique, nous avons montré que la TPTZ pouvait s'insérer dans la micelle jusqu'au voisinage de l'eau qu'elle renferme, comme cosucfactant : la TPTZ a, en effet, des propriétés tensioactives que nous avons démontrées notamment par la mise en évidence de polymères (HTPTZ), (x = 3 ou 4) dans l'eau. Dans la micelle où elle a tendance à prendre la place des substituants nonyles qu'elle repousse vers le diluant organique, la TPTZ bloque une ou deux fonctions sulfonates, ou complexe un cation, et participe à la cohésion de l'ensemble de la micelle par des liaisons π - π avec des noyaux naphtalène de DNNS^{*}. Les sulfonates voisins d'un cation extrait n'ont pas tendance, comme dans un complexe classique, à l'entourer complètement, car ils sont retenus par la partie organique des molécules auxquelles ils sont greffés et qui constituent la micelle inverse. Ce dernier point est très important car il explique à la fois que la micelle saturée en métal ou en TPTZ ne soit pas détruite (ne dépolymérise pas) et que les DNNS n'éloignent pas la TPTZ du cation qu'elle complexe dans la miccile, comme c'est le cas des αBrC10 dans MTPTZ (αBrC10)3. La sélectivité de l'extraction synergique par le HDNNS et la TPTZ est, en effet, du même ordre de grandeur que celle de la complexation en phase aqueuse.

Ainsi du HDNNS 0,1 M associé à de la TPTZ 0,1 M dans le tbutylbenzène extraient sélectivement les actinides trivalents. Le coefficient de partage des actinides est 20 fois supérieur à celui des lanthanides à partir d'une solution 0,3 molaire d'acide nitrique. Les performances de cette application pratique sont plus intéressantes que celles des procédés de séparation des actinides trivalents des lanthanides actuellement utilisés. 5.1

Nous avons ainsi atteint notre but essentiel qui était de confirmen le choix de réactifs azotés pour la séparation actinides trivalents/lanthanides ; de plus, outre l'application pratique que nous proposons de développer, nous avons mis en évidence l'utilisation qui pouvait être faite d'un extractant polymérisé sous forme de micelles inverses, en particulier son emploi en synergisme avec un cosurfaciant Enfin nois avons montré qu'il était possible de prévoir quantitativement de telles extractions à l'aide d'une théorie relativement simple. ŝ

ANNEXES

A base of the strain of the st

•---

I. MODES OPERATOIRES

Des précautions particulières sont prises, pour éliminer les impuretés génantes (surtout le fer). Tous les ustensilés sont en verre, ils sont mis à tremper douze heures dans le mélange sulfochromique (préparé comme indiqué dans la référence [147] rincés à l'eau bidistillée puis à l'éthanol. Une fois ce premier traitement subi, la même verrerie est réùtillisée, elle est alors lavée à l'acide chlorhydrique ou par une solution alcoolique de TPTZ, elle est conservée à l'abri de la poussière. La pureté est contrôlée par le spectre d'absorbtion visible de la dernière solution de lavage à laquelle or prajoute de la TPTZ (trajet optique 10 cm).

. Mesures d'absorbance

Elles sont effectuées à l'aide de spectrophotomètres BECKMANN UV5270 ou BECKMAN ACTA HIV ou CARRY 17. Les cuves de différents trajets optiques (de 10 cm à \equiv 0,00! cm) sont en quartz : 120 QS K 281 (100 mm), 120 QS K 282 (50 mm), 120 QS K 280 (20 mm), 110 QS K 281 (10 mm), 114 QS K 282 (10 mm), 114 QS K 281 (5 mm), 110 QS K 282 (1 mm), 124 QS 281 (0,1 mm), 124 QS 280 (0,01 mm).

Les solutions très diluées en TPTZ (concentration inférieure à 10^{-6} moles par litre) peuvent s'adsorber sur les parois : la verrerie est prééquilibrée avec ces solutions.

. Mesures de pH

Elles sont effectuées à l'aide d'électrodes combinées TACUSSEL TCBC 11/H S/sm ou TCBC 11/HS et METHROM EA 121 ou EA 125 reliées à un pH mètre TACUSSEL ISIS 20 000, ARIES 4000 ou MINISIS 5000 ou METHROM E-512.

Les mesures de pH en boîte à gants métallique s'effectuent en reliant électriquement la boîte au boitier du pH mètre TACUSSEL ISIS 20000 le pH mètre et les électrodes sont calibrés avec des solutions tampons TACUSSEL ou de l'acide chlorhydrique (ou nitrique) à force ionique molaire (chlorure ou nitrique).

- 138 -

÷

. Extraction liquide-liquide

ŧ

Deux millilitre de chaque phase sont versés dans un tube en verre, cylindrique, bouché de capacité de 10 ml. Les tubes sont agités à l'aide d'un VORTEX-GENIE K 550 GE trente secondes à deux minutes et, si nécessaire, une demi-heure à vingt quatre heures à l'aide d'un TUR-BULA T.2C : le temps minimum d'agitation est déterminé par une cinétique de l'équilibrage de chaque espèce chimique présente, entre les deux phases. Les tubes sont alors centrifugés à l'aide d'une IEC-CLINICAL-CENTRI-RUGE, puis les phases séparées, la concentration des espèces étudiées est alors mesurée dans chaque phase (si possible) enfin le pH de la phase aqueuse est mesuré. į

On prépare, équilibre, sépare puis dose toujours une série d'échantillons. Toutes les séries se recoupent afin de vérifier la reproductibilité des mesures.

. Dosage de l'eau dans les solvants

On utilise un appareil PROLABO HYDROMAT BIZOT & R.CONSTANT.

. Dosages radiométriques y

Un millilitre de liquide est placé dans un flacon de verre bouché de capacité deux millilitres, lui-même placé dans un flacon bouché en polyéthylène. Le tout est calé toujours au même endroit sur un détecteur HARSHAW Ge (Li), préamplificateur NB 216.

Le signal est traité par un analyseur multicanal INTERZOOM NUMELEC pour obtenir le spectre y. Le rendement du détecteur ainsi utilisé est de l'ordre de 0,7 %. L'ordre de grandeur des concentrations de radionucléides utilisés est indiqué dans le tableau ci-après.

Sauf pour l'Am, les radioéléments sont fournis par l'ORIS (CEN-Saclay-CEA) ou, à défaut, par AMERSHAM-France. Les dilutions sont données à titre indicatif pour l'ensemble de comptage y utilisé ; pour les éléments à période courte, il faut évidemment tenir compte de la décroissance radioactive.

Le temps mort - temps pendant lequel les impulsions électriques émises par le détecteur sont automatiquement rangées dans les cannaux du Zoumax cuivant leur intensité - est maintenu inférieur à 5 % en diluant

CARACTERISTIQUES DES SOLUTIONS MERES RADIOACTIVES

Radionucléide (référence de AMERSHAM)	Caractéri <u>s</u> tiques des solutions	Dilution initiale	: Période	: Energie de pics intenses : : d'émission γ (KeV)	Canaux correspondants
(HS1) ¹⁴⁴ Ce	0,11 mg.ml-1 0,43 mCi.ml-1	1/10 ²	285 jours	80 ; 134	220-250; 355-398
(NAS1) ¹⁴⁷ Nd	0,45 mg.ml ⁻¹ 1,6 mCi.ml ⁻¹	: 1/10 ⁴	: 11 jours	: 533 :	
¹⁵² Eu + ¹⁵⁴ Eu	245 mCi.ml ⁻¹	: 2/10 ⁴	:13 et 8 ans	: 122; 345 :	320-365; 920-950
(GDS1) ¹⁵³ Gd	80 µg.m1 ⁻¹ 1,28 mCi.m1 ⁻¹	4/10 ³	: 242 jours :	97-103	160-310
(TNS1) ¹⁶⁰ TD	4,9 mg.ml ⁻¹ 0,43 mCi.ml ⁻¹	6/10 ⁴	72 jours	86,7 (197-216) 299;830; 970	235-270; 755-835; 320-2360 2555-2600
(YCS1) ¹⁶⁹ Yb	28µg.m1 ⁻¹ 0,63 mCi.m1 ⁻¹	8/10 ⁴	: 31 jours :	110-131 (177-198) 308	355-380; 820-860
241 _{Am}	0,03 mole.1 ⁻¹	1/10 ⁴	433 ans :	59,6	130-190
⁵⁹ Fe	12,8 mCi.mg ⁻¹ 1 mCi.ml ⁻¹	5/10 ⁴	: 45 jours :	1100; 1290	2900-2940; 3410-3445
⁸² Br	1,1 mCi.ml ⁻¹ 0,2 mCi.mg. ⁻¹	4/10 ⁶	: 35 heures : :	554; 619; 698; 777; 828: 1044; 1317; 1475	

suffisamment les solutions. Le temps de comptage est déterminé pour compter au moins mille chocs par pic pris en considération.

ł

. Dosages radiométriques α

L'américium et le curium sont fournis par la STU (C.E.A.). Vingt microlitres de liquide sont évaporés lentement sur un disque métallique puis chauffés. La radioactivité totale est mesurée à l'aide d'un compteur (système CEA). Le rapport entre les concentrations d'américium et de curium est mesuré par spectrophotométrie α à l'aide d'une chambre d'ionisation reliée au même analyseur multicanal que pour la spectrométrie γ .

Les concentrations utilisées sont :10⁻⁵ mole 1.⁻¹ pour ²⁴¹Am et 10⁻⁶ mole 1.⁻¹ pour ²⁴⁴Cm. Les pics d'émission α utilisés ont pour énergie 5,89 et 5,44 MeV pour ²⁴¹Am, 5,76 et 5,81 MeV pour ²⁴⁴Cm.

. Synthèse et dosage de la TPTZ

La TPTZ est un produit MERCK. Nous l'utilisons tel quel. Sa pureté est contrôlée par dosage pH métrique dans l'éthanol à l'aide d'acide perchlorique.

D'après LERNER / 109 /, la synthèse, la purification et le contrôle de la pureté de la TPymT peuvent être effectués comme suit :

La TPTZ est synthétisée par trimésiration de cyano-2-pyridine [109, 113, 114_7. La TPymT (figure 3) et des dérivés de la TPTZ (ou de la TPymT) dont les cycles pyridiniques (ou pyrimidiniques) possèdent un groupement alkyle (méthyle ou éthyle) en position 4 ont également été synthétisés par les mêmes auteurs ; ces chaînes alkyles ne peuvent être greffées sur la TPTZ (ou la TPymT) : il faut effectuer la trimésiration de la chloro-4-méthyl-6 pyridine.

La 2-cyanopyrimidine est synthétisée à partir de la 2-chloropyrimidine [159 - 160] (Point de fusion 40 à 42°C). Cette pyrimidine (5,5 mg) est chauffée en agitant dans un flacon muni d'un reflux, à 150°C, jusqu'à l'obtention d'un solide (48 heures environ). La 2-cyanopyrimidine n'ayant pas réagie est éliminée par pulvérisation et lavage à l'éther éthylique. Le rendement en l'AymT (2, 4, 6 - tri - (2-pyrimidyl) - 1, 3,5 triazine) est de 4,6 mg (83,6 %). La TPymT est purifiée par recristallisation dans l'eau ou par dissolution dans HCI 6N décoloré sur charbon actif, précipitation du sel hydrochlorhydrique dans l'acétone puis dissolution dans l'hydroxide d'ammonium. Ē

La pureté est contrôlée par spectrométrie de masse (ion parent 315), RMN du proton (doublet 9,57 p.p.m., 2H; triplet 8,39 p.p.m. 1H; par rapport au DSS dans du DCP 3 M environ) et spectrophotométrie infrarouge (modes de la pyrimidine, pas de N-H, carbonyl ou nitrile).

Spectre le masse à 75 V et 200°C pic le plus intense 105 (100 \$), pic parent 315 (58), 316 (11), 210 (3), 209 (3), 157,5 (1), 131 (7), 104 (4), 106 (51), 95 (4), 79 (21), 78 (22), 53 (21), 52(11).

Spectre infrarouge (Nujol) : 3060 cm⁻¹ (faible), 1568 (moyen) 1536 (Fort), 1445 (F), 1430 (m), 1278 (f), 1217 (m), 1182 (f), 994 (m), 862 (f), 848(m), 825 (m), 786 (m), 720 (f), 680 (F), 633 (f).

. Dégradation de la TPTZ

Selon LERNER $_709_7$, le mécanisme de dégradation de la TPymT en présence de cuivre commencerait par l'attaque d'un agent nucléophile (H₂O) sur le carbone de la triazine situé en α de l'azote de la triazine liée au cuivre :

On obtient ainsi un nouveau ligand L'. Le spectre infrarouge de CuL'(H_2O)₃ NO_3 2H₂O est (Nujol) : 3450 cm⁻¹ (large, m), 3060 (f), 1726 (F), 1603 (f), 1623 (m), 1578 (F), 1562 (f), 1380 (large sous le pic du Nijol), 1200 m, 1114 (f), 1076 (f), 1044 (f), 1030 (f), 1005 (f), 855 (f), 830 (f), 715 (m), 675 (m). Le spectre infrarouge de Cu L' $(H_2O)_3NO_3$ 3400 cm⁻¹ (large,m) 1710 (F), 1665 (m), 1640 (m), 1600 (F), 1570 (m), 1380 (large sous le pic du Nijol), 1150 (f), 1090 (f), 1045 (f), 1025 (m), 1000 (f), 968 (f), 815 (m), 792 (f), 753 (m), 698 (m). Extrait dans le benzène on obtient

la 2-picolinamide. Spectre infrarouge (CHCl₃), 3559 cm⁻¹ (f), 3413 (f), 3030(m), 1689 (F), 1592 (f), 1555 (F), 1515 (f), 1462 (f), 1433 (m), 1414 (épaulement), 1370 (m), 1078 (f), 1033 (m), 991 (f), 920 (m) ; spectre de masse à 75 V; ion parent et pic le plus intense 122 (100 %), 123 (29), 106 (9), 105 (6), 104 (7), 80 (18), 79 (56), 78 (93), 77 (10), 76 (13), 77 (9), 53 (9), 52 (43), 51 (49), 50 (41).

Les produits et le mécanisme de dégradation de la TPTZ seraient analogues _ 109_7.

. Dosages volumétriques

Ils sont effectués à l'aide d'un titimétre automatique METHROM E 435 ou, pour les dosages d'acide organique (en phase organique) par la potasse ou la soude (en phase aqueuse) METHROM E 536 (dont le moteur est de type pas à pas).

Pour tous les dosages pH métriques on utilise une électrode combinée METHROM EA 121.

. Montages électrochimiques

Les montages électrochimiques sont réalisés à l'aide du matériel TACUSSEL suivant :

- . Potentiostat PRT 40 1 X
- . Enregistreur SEFRAM
- . pH mètre Isis 20 000, Aries 4000 ou Minisis 6000
- . Millivoltmètre Isis 20 000, Aries 4000, Minisis 6000
- . Milliampèremètres de l'intégrateur IG6N
- . Electrode de référence C 4

. Origine des produits chimiques

- . TPTZ MERCK 10 238
- . HC1 MERCK titrisol 9970
- . HND, MERCK titrisol 9966
- . NaOH MERCK titrisol 9956
- . décanol : ALDRICH 15 058-4 (ou PROLABO)

Lanthanides FLUKA qualité puriss :

La	:	La203	61 550
Се	:	Ce(NO3)36H20	22 350
\Pr	:	Pr6011	81 500
Nd	:	Nd ₂ O ₃	72 130
Sm	:	Sm203	84 460
Eu	:	Eu ₂ 03	46 140
Gd	:	Gd ₂ 0 ₃	48 220
ТЪ	:	Tb ₄ 0 ₇	86 390
Dy	:	Dy203	44 650
Ho	:	Ho ₂ 03	53 440
Er	:	Er203	45 410
Tm	:	Tm ₂ O ₃	89 250
ΥЪ	:	Yb ₂ 0 ₃	95 780
Lu	:	Lu203	62 700

t-bultylbenzène (2-Méthyl-2-phenyl propane) purum FLUKA 19 650 2-2-4, trimethyl-3-pentanol FLUKA 92 640 2-t-butyl-8 methyl phenol FLUKA 20 310 acide- α -bromocaprique (2-bromodecanoic acid) purum FLUKA 16 860 di-nonylnaphtalène sulphonate de sodium en solution molaire dans le kérozène. R.T.VANDERBILT Company, Inc.

Les autres produits chimiques sont des réactifs PROLABO, si possible de qualité R.P. (pour analyses).

Maradon I and a second

II. RESULTATS EXPERIMENTAUX

Seulement quelques figures significatives sont présentées dans le texte ; pour donner plus de détails, nous en rajoutons dans cette annexe. Nous rappelons le paragraphe (plus éventuellement la figure du texte) auquel correspond les figures ci-dessous.

§.I.1.1.b. Solubilités de lanthanides calculées d'après les résultats du tableau II en ne tenant compte que des espèces Ln³⁺, LnOH²⁺ et Ln(OH)₃, la courbe représentative des variations de colog [Ln]₁ en fonction du pH est pratiquement une droite de pente 2.

man a state of the

§.1.2.1.a. Purété en fer requise pour que moins de 1 % de la TPTZ soit complexante du fer, en supposant que les seules espèces en solution sont Fe²⁺, TPTZ et Fe(TPTZ)²⁺₂

- §.I.2.1.d. Résultats de l'interprétation quantitative des mesures d'absorbance (de la figure 5) de la TPTZ en fonction du pH
 - 305 rm; ▲ 300 rm; ▲ 295 rm; 0 242,5 rm; △ 247,5 rm;
 □ 257,5 rm + 325 rm

Influence de la valeur de Bj (c'est à dire E_{HTPTZ}+) sur le résultat de l'optimisation

	_	
r	C .	
	~	- 4
•	_	

Ъ

Proportion des espèces en solution

			,			-					
				pKa ₁	3,31	3,3	3,8	3,0	2,8		
				рКа ₂	1,78	1,9	2,2	2,6	2,7		
				рКа ₁	3,28	3,24	3,05	2,76	2,53		
	រព្	109A	100C	рКа ₂	1,79	2,01	2,37	2,79	Z,89		
Δ	247,5	488	229		257,6	259	262	27Z	235		
0	295	553	943		319,9	811	783	694	703	100 B (
a	3.15	222	534		399,7	390	355	247	234		
+	325	15	150		387						
				-	\vdash						

Utiphas messently for

- 148 -

05

1.1

1.

§.I.3.1.a. Spectres d'absorption de la TPTZ dans des solutions de lanthanides : exploitation des résultats

ar el estador l'arte la substitute de la su

العالية والمستعلم والمراجع والمراجع والمراجع والمراجع المراجع والمستعلم والمعارفة والمعارفة والمعارفة والمعارفة

ţ

Section 1 Section

 $\{0,0\} \in \mathbb{R}^{n}$

 $\underbrace{ \underbrace{\S.I.3.1.b.}_{M} \ (Figure 12) \ Calcul \ de \ la \ constante \ de \ formation \ du \ complexe \ M \ TPT2^{3+} \ a \ partir \ de \ mesures \ du \ coefficient \ de \ partage \ entre \ le \ décanol \ et \ une \ solution \ aqueuse \ de \ M^3+.T \ = \ 23 \ ^2 \ C^2 \ . } }$

-

ł

-

5.111

<u>§.I.3.1.b.</u> Destruction de la TPTZ par des solutions aqueuses concentrées de lanthanides : spectre ultraviolet des produits de dégradation extraits dans le décanol Ę

$$a[Nd]_{+} = 0,32 \text{ M} (1) \text{ et } 0,08 \text{ M} (2)$$

•

The second second

Service of the servic

Maria and a state of the

Variations des spectres de lanthanides dans le méthanol en présence de TPT2. Particular of the

and a

-

" Margaren an alle and "

ł

- 105 -

§.1.3.2.b. (figure 15) Dosage du néodyme var la TPT2 dans le méthanol $T = 23 \pm 2^{\circ}C$; 5 % d'eau.

and the state of the second state of the second state of the

r a de la companya de la companya angle ana bana a angle ang

5

Variations du spectre de la TPTZ dans le métahnol, lors de la formation des complexes LnIIITPTZ

and the state of the

T = 23 ± 2°C,5 % d'eau

Nd^{III}TPTZ trajet optique : 10 cm [TPTZ] $_{t}$ = 4 10⁻¹ M Référence EtM

and foreign and the

and the second \$.I.3.2.d. Spectre d'absorption de la TPTZ dans l'eau (KC1 IM) à pH neutre (----) et pH = 0 (----) et dans le mélange méthanol eau 50 % (----). and the state of the second second

 $T = 23 \pm 2^{\circ}C$ trajet optique 1 cm

and the product

ţ

And the state of t

La réduction d'europium trivalent en présence d'ophen dans le mélange eau-éthanol 50 % pourrait être interprétée [4] par la stabilisation de l'europium divalent sous forme Eu(II) ophen. -

a presente de la composición de la comp

Jusqu'à très recemment, il n'existait pas d'autre exemple de ligand stabilisant l'état divalent par rapport à l'état trivalent des lanthanides [165]. Compte-tenu de l'analogie entre l'ophen et la TPTZ (§.I.1.3.c.), nous allons étudier la réduction de l'europium en présence de TPTZ.

Cette étude pourrait avoir les prolongations suivantes :

- . compréhension du phénomène,
- complexation d'autres lanthanides réductibles à l'état divalent : ytterbium, samarium, thulium et peut être americium,
- . séparation chimique de ces éléments.

BIBLIOGRAPHIE

Les ions trivalents des éléments cités ci-dessus peuvent être réduits dans l'eau (ou dans d'autres solvants) à l'état divalent, alors que la réduction des autres lanthanides trivalents (et probablement de la plupart des actinides) conduit au métal sans passer par l'état divalent <u>[</u>145, 146<u>7</u>. L'interprétation des polarogrammes d'europium est généralement compliquée par divers phénomènes parasites à l'électrode $_$ 145, 146 $_$ 7. Dans des mélanges eau-éthanol, la réduction de l'europium III en europium II est d'autant moins réversible et son potentiel moins négatif, que le pourcentage en eau est faible. L'europium est dosé très précisément dans le méthanol parfaitement anhydre (voir à ce sujet les références citées dans $_$ 145 $_$ 7) par coulométrie pendant la réoxydation de son état divalent à l'état trivalent.

Dans l'eau, l'europium divalent présente 2 pics d'absorption vers 320 nm et 245 nm / 148_7.

Thermodynamiquement, le zinc métal est plus réducteur que l'europium divalent [147].

RESULTATS EXPERIMENTALIX

Dans l'eau, la réduction, soit électrochimique, soit à l'aide de zinc ou d'amalgame de zinc, de Eu^{5+} s'accompagne de la réduction de H⁺. La quantité d'eau présente dans le méthanol ou l'éthanol est le facteur le plus important pour la stabilité cinétique de l'europium divalent et l'allure des polarogrammes.

La complexation d'Eu²⁺ dans l'eau, par la TPTZ, n'a pu être mise en évidence par spectrophotométrie ; étant donné les conditions expérimentales utilisées, on en déduit que la constante de formation d'un éventuel complexe EuTPTZ²⁺ ne serait pas dix fois supérieure à celle du complexe EuTPTZ³⁺ (log $_{B_1}^{Eu(III)} = 3,11$).

Dans des mélanges eau-éthanol ou méthanol, nous avons pu maintenir de l'europium à l'état divalent avec de l'amalgame de zinc, pour tracer son spectre . La TPTZ complexe Eu(II) dans l'alcool, le complexe précipite, il est bleu, il présente deux pics d'absorption à 610 et 740 nm.

Toutefois ce spectre se superpose avec le spectre du complexe également bleu (pic à 635 nm et 790 nm), du produit d'oxydation du zinc, avec la TPTZ.

Nous avons vérifié qu'il ne s'agit pas d'un complexe de TPTZ avec Zn^{2+} ou H_g^+ et nous avons pu synthétiser ce complexe en réduisant Zn^{2+} par le zinc métal en présence de TPTZ. Il peut s'agir :

- soit de zinc à un degré d'oxydation compris entre 0 et 2
 (1 ?) et stabilisé par la TPTZ,
- soit de Zn^{II} complexé par la TPTZ réduite en radical anion : la présence d'imines conjuguées peut donner lieu, en effet, à de telles réactions (§.I.1.4.d.)

En conclusion, nous n'avons pu démontrer l'aptitude des pyridines (phen, TPTZ) à stabiliser l'europium divalent. D'un point de vue pratique, nos résultats expérimentaux semblent indiquer que la TPTZ est un moins bon ligand que certains éther couronnes [163], pour stabiliser l'europium divalent.

्यू ह

700

18

Beduction électrochimique d'une solution d'Eu, sur électrode de mercure [Eu]_t = 5,6 10⁻³ M, densité de courant imposé : 5,1 mA.cm⁻², pH = 3 maintenu avec de l'acide acétique ; trajet optique 1 cm ; T = 23 [±] 2°C ; I = 1M(KCl)

111

Eu]_t = 2,94 10^{-3} M, potentiel d'électrolyse - 0,9V/e.c.s, pH = 5 maintenu avec HCl - trajet optique1 mm; T = 23 ± 2°C, I = 1 M (KCl)

and the second of the second

Spectres des produits de réduction de Zn et Eu sur amalgame de zinc dans une solution alcoolique de TPTZ.

- fr

1

 $T = 23 \pm 2^{\circ}C$ ethanol/eau 15 %

$$\lfloor 2n (CH_{3}CO_2)_2 \rfloor_{\mathfrak{L}} = 0,05 \text{ M} (---) \text{ ou } \lfloor EUCL_3 \rfloor_{\mathfrak{L}} = 0,1 \text{ M} (----)$$

trajet optique 5 mm

Dispositif expérimental

Potentiel contrôlé Courant imposé

1 - Amenée de courant pour électrolyse sur nappe de mercure et amenée d'azote

- 2 Electrode auxiliaire dans un comportiment séparé
- 3 Electrade capilaire à gautte de mercure pour polarographie
- 2 Electrode de verre (simple) pour mesurer le pH
- 5 Electrode de référence dans un compartiment séparé

Cellule d'électrolyse

- $\underbrace{\underbrace{\$.11.2.2.b}_{et \ de \ TPTZ}}_{T \ = \ 23 \ \stackrel{e}{-} 2^{\circ}C[H\alpha BrC_{10}]_{t} = 1 \ M, trajet \ optique \ 1 \ cm }$
 - a du NdCl₃ est dissout dans le solvant
 - b extraction de NdOH₃ par HxBrC₁₀ dans le décanol

Ъ

§.II.3.1.b. (figure 21) Mesure des constantes d'extraction de K⁺ et Na⁺ par le HDNNS dans le t-butylbenzène $T = 23 \pm 2^{\circ}C$.

Composition des phases aqueuses	[HDNNS] initial (mole 1 ⁻¹)	Constante d'extraction colog k
$[KNO_3]_t \pmod{1^{-1}}$		
2	0,5	0,56
1	0,1	0,74
1	0,1	0,74
0,1	0,01	0,90
0,01	0,001	.0,35
$\left[NaNO_3 \right]_{t}$ (mole 1 ⁻¹)		
2	0,5	0,56
1	0,1	0,61
0,1	0,01	0,47
0,01	0,001	0,12

junita di New Profession

III - EXPLOITATION DES RESULTATS

Nous établissons les formules ayant permis d'interpréter les résultats ; nous indiquons le principe des calculs d'optimisation. Les programmes de calcul correspondants peuvent être fournis sur demande.

Nous utilisons les abréviations suivantes :

- L pour TPTZ ou TPTZ
- L_ pour TPTZ]_
- HA pour un acide organique (HaBrC10 ou HDNNS)

et les autres notations indiquées dans le texte.

III - 1. * Variations d'absorbance du mélange L, HL⁺ et H₂L²⁺en fonction du pH [§.I.2.1.c.]

> $L_t = C_0$ est constant ; si chacune des espèces L, HL⁺ et H₂L²⁺ peuvent être obtenues pures (donc à la concentration C₀) leur absorbance est A, B et C ; l'absorbance du mélange est, à la longueur d'onde \bar{x}_j pour une solution à pH₁,

 $Y_{ij} = \alpha_i A_j + \beta_i \beta_j + \gamma_i C_j$ où $\alpha = \frac{L}{C_0}$; $\beta = \frac{HL^+}{C_0}$ et $\gamma = \frac{H2L^{2+}}{C_0} = 1 - \alpha - \beta$

Les constantes des équilibres :

 $K_{a_2} = \frac{H^+ HL^+}{H_-L^{2+}}$

L + H⁺ $\stackrel{\ddagger}{\leftarrow}$ HL⁺ et HL⁺ + H⁺ $\stackrel{\ddagger}{\leftarrow}$ H₂L²⁺, K_{a1} = $\frac{H^+}{HL^+}$

et

s'écrivent :

$$\begin{cases} K_{a_1} = H^{\dagger} \frac{\alpha}{\beta} \\ K_{a_2} = H^{\dagger} \frac{\beta}{1 - \alpha - \beta} \end{cases}$$

et

On résoud ce dernier système ainsi :

i

$$\beta = \frac{H^+}{K_{a_1}} \alpha$$

$$\frac{H'}{Ka_2} = \frac{1-\alpha}{\beta} = \frac{1}{\beta} = \frac{1-\alpha}{\alpha} = \frac{1-\alpha}{\frac{H^+}{Ka_1}} = 1$$

cette dernière égalité permet d'exprimer :

$$\frac{1}{\alpha} - 1 = \frac{H^{+}}{K_{a_1}} \left(1 + \frac{H^{+}}{K_{a_2}} \right)$$

soit :

$$\beta = \alpha \frac{1}{\frac{1 + H^{+}}{K_{a_{1}}} + \frac{H^{+2}}{K_{a_{1}}}}$$

le système est donc résolu.

α et β peuvent être calculés par régression linéaire à partir des données expérimentales Y_{ij}, A_j, B_j et C_j, si B_j et C_j ne sont pas connus ils sont optimisés :

 $Y_{ij} = \alpha_i A_j + \beta_i B_j + (1 - \alpha_i - \beta_i) C_j$ $Y_{ij} = C_j + (A_j - C_j) \alpha_i + (B_j - C_j) \beta_i$ $\frac{Y_{ij} - C_j}{A_j - C_j} = \alpha_i + \frac{B_j - C_j}{A_j - C_j} \beta_i$

soit

ou

pour optimiser α_i et β_i par régression linéaire

$$\frac{y_{ij} - \alpha_i A_j}{\beta_i} = B_j + (\frac{1 - \alpha_i}{\beta_i} - 1) C_j$$

pour optimiser B_i et C_i par régression linéaire.

$$\text{Comme log} \quad \frac{\beta}{\alpha} = pKa_1 - pH$$

et
$$\log\left(\frac{1-\alpha}{\beta}-1\right) = pK_{a_2} - pH$$

 $\log \frac{\beta_{i}}{\alpha_{i}} = f(pH_{i}) \quad \text{et} \quad \log \left(\frac{1 - \alpha_{i}}{\beta_{i}} - 1\right) = g(pH_{i})$

sont des droites de pente - 1 correspondant au nombre de H^+ échangé entre L/HL^+ et $HL^+/H_2L^{2+}.$

On remarque que, suivant les valeurs relatives des pH par rapport aux pK_a , l'incertitude sur la détermination de α , β et γ varie, il faudrait donc pondérer les régressions pour en tenir compte. Les régressions ne sont plus, alors, linéaires, sauf si on force, par un artifice, les coefficients de la pondération à être entiers.

L'incertitude relative sur $\frac{B_i}{\alpha_i}$ est minimale pour pH_i = pK_{a1} : · elle est alors de l'ordre de grandeur de ΔpH. Dans le calcul de pK_{a1}, on peut alors pondérer chaque point $(\frac{B_i}{\alpha_i}, pH_i)$ ainsi :

 $E (100 \ 10^{-1 pKa} 1^{-pH}i^{l})$ fois

où E(x) est la partie entière de x.

On garde la même pondération pour optimiser $\alpha_{\underline{i}}$ et $\beta_{\underline{i}}$ dans le domaine :

$$pKa_1 - 2 \leq pH_i \leq pK_{a1} + 2$$

On procède de même pour le calcul de pK_{a_2} .

 $\begin{array}{c} \mbox{Comme } (pK_{a_1} - pK_{a_2}) \ n'est \ pas \ nettement \ supérieur \ a \ 2, \ on \ réitère \ plusieurs \ fois, le calcul, en calculant d'abord \ pK_{a_1} \ avec \ la \ pondération \ E \ (100 \ 10^{-1} \ pK_{a_2}^k \ - \ pHi \) \ puis \ pK_{a_2} \ avec \ la \ pondération \ : \ E(100 \ 10^{-1} \ pK_{a_2}^k \ - \ pHi \) \ pous' \ la \ (k \ + \ 1)^{\mbox{eme}} \ iteration. \end{array}$

ou :

Toujours dans le (§.I.2.1.c.), nous utilisons des résultats (tableau VII) pour exploiter les variations d'absorbance de L en fonction du pH où L peut se dimériser suivant les réactions suivantes :

*
$$2 L + H^{+} \stackrel{?}{=} HL_{2}^{+}$$

 $HL_{2}^{+} + H^{+} \stackrel{?}{=} H_{2}L_{2}^{2+}$

pour conserver l'expression :

$$Y_{ij} = \alpha_i A_j + \beta_i B_j + (1 - \alpha_i - \beta_i) C_j$$

on note :

$$\alpha = \frac{L}{C_0}, \beta = 2 \frac{HL_2^{2+}}{C_0}$$
 et $1 - \alpha_i - \beta_i = 2 \frac{H_2L_2^{2+}}{C_0}$

A_j l'absorbance de L seul, pour L = C_o
B_j l'absorbance de HL⁺₂ seul, pour HL⁺₂ =
$$\frac{C_o}{2}$$

C_j l'absorbance de H₂L²⁺₂ seul, pour H₂L²⁺₂ = $\frac{C_o}{2}$

les constantes d'équilibre :

$$K_{1} = \frac{H^{+} L^{2}}{HL_{2}^{+}}$$
$$K_{a} = \frac{H^{+} HL_{2}^{+}}{H_{2}L_{2}^{2+}}$$

et

s'écrivent alors :

$$\begin{cases} K_1 = H^+ \frac{\alpha^2 2C_0}{\beta} \\ et K_a = H^+ \frac{\beta}{1 - \alpha - \beta} \end{cases}$$

on résoud ce dernier système ainsi :

$$\frac{H^{+}}{K_{a}} = \frac{1-\alpha}{\beta} - 1 \quad \text{donc} \quad \beta = \frac{1-\alpha}{1+\frac{H^{+}}{K_{a}}}$$

et 2 C₀ $\alpha^{2} = \frac{H^{+}}{K_{1}} - \frac{1-\alpha}{1+\frac{H^{+}}{K_{a}}} = 0$

conduit à l'équation du second degré :

solt
$$\begin{pmatrix} 2 & C_{0} & \frac{H^{+}}{K_{1}} & (1 + \frac{H^{+}}{K_{a}}) & \alpha^{2} + \alpha - 1 = 0 \\ \\ \begin{pmatrix} \alpha & = \frac{\sqrt{1 + 2 \times - 1}}{\chi} \\ o\hat{u} & X = 4 & C_{0} & \frac{H^{+}}{K_{1}} & (1 + \frac{H^{+}}{K_{a}}) \\ et & \beta = 2 & C_{0} & \alpha^{2} & \frac{H^{+}}{K_{1}} \end{pmatrix}$$

On vérifie le nombre de protons échangés en traçant les droites d'équation :

and the second second second

$$pK_1 = pH + \log \frac{\beta}{2\alpha^2 C_0} = pH + \log \frac{\beta}{\alpha} - \log \alpha - \log 2 C_0$$

$$pK_a = pH + \log\left(\frac{1-\alpha}{\beta} - 1\right)$$

on pondère par :

E (100 10^{- |pK}1 + log 2 C₀ - pH |₎ pour calculer pK₁

et par $E(100 \ 10^{-1} \ pK_a - pH)$ pour pK_a

les constantes d'équilibre

$$K_{1} = \frac{H^{*}L^{2}}{HL_{2}^{*}}$$
$$K_{2} = \frac{H^{*}HL_{2}^{*}}{HL^{+2}}$$

et

s'écrivent alors :

et

$$\begin{cases} K_1 = H^* \quad \frac{\alpha^2 \ 2 \ C_0}{\beta} \\ K_2 = H^* \quad \frac{\beta}{(1 - \alpha - \beta)^2 2C_0} \end{cases}$$

on résoud ce dernier système ainsi.

$$\beta = 2 C_0 \frac{H^+}{K_1} \alpha^2$$

et $K_1 K_2 = H^{+2} \frac{\alpha^2}{(1 - \alpha - \beta)^2}$ soit $\frac{1 - \beta}{\alpha} - 1 = \frac{H^+}{\sqrt{K_1 K_2^+}}$

ce qui conduit à une équation du second degré.

$$\alpha \left(\frac{H^{+}}{\sqrt{K_{1} K_{2}}} + 1 \right) = 1 - 2 C_{0} \frac{H^{+}}{K_{1}} \alpha^{2}$$
soit 2 Co $\frac{H^{+}}{K_{1}} \alpha^{2} + \left(\frac{H^{+}}{\sqrt{K_{1} K_{2}}} + 1 \right) \alpha - 1 = 0$

$$\left\{ \begin{array}{c} \alpha = \frac{\sqrt{Y^{2} + 2 X} - Y}{X} \\ \alpha = \frac{\sqrt{Y^{2} + 2 X} - Y}{X} \\ \alpha = \frac{\sqrt{K_{1} K_{2}}}{K} + 1 \\ \alpha = \frac{1}{2} C_{0} \frac{H^{+}}{K_{1}} \quad \text{et} \quad Y = \frac{H^{+}}{\sqrt{K_{1} K_{2}}} + 1 \\ \alpha = \frac{1}{2} C_{0} \frac{H^{+}}{K_{1}} \alpha^{2} \end{array} \right\}$$

Soit

On vérifie le nombre de protons échangés en traçant les droites d'équations :

$$\frac{1}{2} (pK_1 + pK_2) = pH + \log \left(\frac{1-\beta}{\alpha} - 1\right)$$
$$pK_1 = pH + \log \frac{\beta}{2r^2C_0} = pH + \log \frac{\beta}{\alpha} - \log \alpha - \log 2 C_0$$

et $pK_2 = pH + \log \frac{(1-\alpha-\beta)^2 2 C_0}{\beta} = pH + \log (\frac{1-\alpha}{\beta} - 1) + \log(1 - \alpha - \beta)\log 2 C_0$

* les autres réactions chimiques rassemblées dans le tableau VII peuvent être interprétées à l'aide des calculs précédents.

L se partage suivant la réaction :

 $L \neq \overline{L}$ $D_{0}^{L} = \overline{L}$

la de constante de la seconda de la constante de la seconda de la constante de la seconda de la constante de la La constante de
alors

Si L se polymérise en phase organique suivant la réaction :

$$n \overline{L} \neq (\overline{L})_{n}$$
$$\overline{k} = \frac{\overline{L}^{n}}{(\overline{L})_{n}}$$
$$D^{L} = \frac{\overline{L}t}{\overline{L}}$$

on mesure

 $L_t = \tilde{L} + n(\tilde{L})_n + L$

si la réaction de polymérisation est pratiquement totale,

$$L_{t} \approx n(L)_{n} = n \quad \frac{L^{n}}{k}$$
et $D^{L} \approx \frac{L_{t}}{L} = D_{0}^{L} \quad \frac{L_{t}}{L} \approx D_{0}^{L} \quad (\frac{n}{k})^{1/n} \quad L_{t}^{1-1/n}$
soit log $D^{L} \approx$ Constante + $(1 - \frac{1}{n})$ log L_{t}
où Constante = log $D_{0}^{L} + \frac{1}{n} \log \frac{n}{k}$

On détermine donc uniquement n et la constante si D_0^L n'est pas commu.

La résolution, sans approximation, conduit à une equation de degré n. Si n > 2 nous n'avons pas trouver de relation permettant d'encadrer dans tous les cas la bonne racine, on ne peut donc employer une méthode numérique de résolution de cette équation, sans risquer de trouver une racine erronée. On peut, par contre, employer la méthode d'itérations, suivante, à condition d'optimiser D_0^L (ou \overline{k}).

$$\log D^{L} = \log D_{0}^{L} + \frac{1}{n} \log \frac{n}{k} + (1 - \frac{1}{n}) \log L_{t}$$

$$L_{i} = \frac{Lt}{D_{i-1}^{L}}$$

$$\overline{L_{i}} = L_{i}D_{0}^{L}$$

$$(\overline{L})_{n,i} = -\frac{L_{t} - \overline{L_{i}} - L_{i}}{n}$$

$$D_{i}^{L} = \frac{n(\overline{L})_{n,i} + \overline{L_{i}}}{L_{i}}$$

pour la ième itération.

Dans le cas où n = 2

l'équation du second degré :

$$L_{t} = L + \overline{L} + 2 \overline{L}_{2} = 2 \frac{\overline{L}^{2}}{\overline{k}} + (1 + \frac{1}{D_{0}^{L}}) \overline{L}$$

soit $\overline{L}^{2} + \frac{\overline{k}}{2} (1 + \frac{1}{D_{0}^{L}}) \overline{L} - \frac{\overline{k}L_{t}}{2} = 0$

permet de calculer $\vec{L} = \frac{\sqrt{Y^2 + 2\vec{k}L_t} - Y}{2}$ $Y = \frac{\overline{k}}{2} (1 + \frac{1}{D_{L}^{L}}),$ $L = \frac{\overline{L}}{D_0^L}$ et $(\overline{L})_2 = \frac{\overline{L}^2}{\overline{k}}$

оù

et donc

$$D^{L} = \frac{\overline{L} + 2 (\overline{L})_{2}}{L}$$

III - 3. * <u>Etude de la basicité d'une dibase, L, par la mesure de son coefficient</u> <u>de partage</u> (§.1.2.2.d.)

Comme L est une dibase :

$$L + H^{\dagger} \stackrel{?}{\xrightarrow{}} HL^{\dagger}$$
$$HL^{\dagger} + H^{\dagger} \stackrel{?}{\xrightarrow{}} H_{2}L^{2}$$

Les constantes de ces équilibres sont les pK_a :

 $\begin{aligned} \mathrm{Ka}_1 &= \frac{\mathrm{H}^+ \mathrm{L}}{\mathrm{HL}^+} & \text{et} \quad \mathrm{Ka}_2 &= \frac{\mathrm{H}^+ \mathrm{HL}^+}{\mathrm{H}_2 \mathrm{L}^{2+}} , \\ \mathrm{D}_0^\mathrm{L} &= \frac{\mathrm{\tilde{L}}}{\mathrm{L}} \end{aligned}$

et

permettent de prévoir la mesure expérimentale

$$D^{L} = \frac{\overline{L_{t}}}{L_{t-aq}}$$

$$\overline{L}_{t} = \overline{L}$$

$$L_{t-aq} = L + HL^{+} + H_{2}L^{2+} = L(1 + \frac{H^{+}}{K_{a_{1}}} + \frac{H^{+2}}{K_{a_{1}} K_{a_{2}}})$$

Donc:
$$D^{L} = \frac{\tilde{L}}{L} \frac{1}{1 + \frac{H^{+}}{k_{a_{1}}} + \frac{H^{+2}}{k_{a_{1}} + \frac{H^{+2}}{k_{a_{2}}}}}$$

soit log $D^{L} = \log D_{0}^{L} - \log (1 + \frac{H^{+}}{k_{a_{1}}} + \frac{H^{+2}}{k_{a_{1}} + \frac{H^{+2}}{$

L'expression ci-dessus peut se mettre sous la forme :

$$1 + \frac{H^{+}}{K_{a_{1}}} (1 + \frac{H^{+}}{K_{a_{2}}}) = \frac{D_{o}^{L}}{D^{L}}$$

Soit $\left(\frac{D_{a}^{L}}{D^{L}}-1\right)\frac{1}{H^{+}}=\frac{1}{K_{a_{1}}}+\frac{H^{+}}{K_{a_{1}}}K_{a_{2}}$

ce qui permet d'optimiser K_{a_1} et K_{a_1} Kaz par régression linéaire ; mais comme nous l'avons déjà signalé, cette méthode ne tient pas compte du fait que, suivant le pH, la mesure de D^L est plus ou moins significative de l'existence de L, HL⁺ ou H₂L²⁺. On utilise donc cette méthode que pour obtenir une première approximation de pK_{a1} et pK_{a2}.
$$\begin{split} \widehat{H}_{ij}^{ij} & = \int_{\mathbb{R}^{n-1}} \sum_{i=1}^{n-1} \left[\widehat{H}_{ij}^{ij} + \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \widehat{H}_{ij}^{ij} + \sum_{i=1}^{n-1} \widehat{H}_{ij}^{ij} + \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \widehat{H}_{ij}^{ij} + \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} $

Puis on calcule à tour de rôle pK_{a_1} (à pK_{a_2} fixé) et pK_{a_2} (à pK_{a_1} fixé) en pondérant les points comme indiqué au début de cette annexe pour l'exploitation des variations spectrales de L en fonction du pH.

$$\frac{n}{K_{a_1} K_{a_2}} = -\frac{n}{K_{a_1}} + \frac{D_0}{D^L} -$$

Soit $pK_{a_2} = 2 pH - \log \left(\frac{D_0^L}{D^L} - 1 - \frac{H^*}{K_{a_1}}\right) - pK_{a_1}$

III - 4. * Prévision de la solubilité d'une bisase (§.I.2.3.)

Si une dibase L, a pour solubilité s_0 quand elle n'est pas protonée, les réactions de protonation solubilisent cette dibase ; la solubilité totale est alors :

s = L + HL⁺ + H₂L²⁺ = L (1 +
$$\frac{H^+}{K_{a_1}} + \frac{H^{+2}}{K_{a_1}K_{a_2}}$$
)
soit s = s₀ (1 + $\frac{H^+}{K_{a_1}} + \frac{H^{+2}}{K_{a_1}K_{a_2}}$)

La solubilisation de L consomme donc des H⁺.

$$C_0 = H^+ + HL^+ + 2 H_2 L^{2+} = H^+ (1 + \frac{L}{K_{a_1}}) + 2 H^{+2} \frac{L}{K_{a_1} K_{a_2}}$$

comme L = s_0 , on a une équation du second degré :

$$\frac{2 s_0}{K_{a_1} K_{a_2}} H^{+2} + (1 + \frac{s_0}{K_{a_1}}) H^+ - C_0 = 0$$

soit:

$$H^+ = \frac{\sqrt{Y^2 + 2 C_0 X} - Y}{X}$$

où

$$Y = 1 + \frac{s_0}{K_{a_1}}$$
 et $X = \frac{4 s_0}{K_{a_1} K_{a_2}}$

Si, à pH suffisamment acide, H_2L^{2+} est l'espèce majoritaire en solution, alors :

colog s = colog s₀ -. pK_{a_1} - pK_{a_2} + 2 pH

colog s = f(pH) est une droite dont la pente est le nombre de protons de l'espèce majoritaire en solution.

En début de solubilisation, si HL⁺ est l'espèce majoritaire ,

s =
$$s_0(1 + \frac{H^*}{K_{a_1}})$$

et $H^* = \frac{C_0}{1 + \frac{S_0}{K_{a_1}}}$

donc, le nombre n de mole de H⁺ par mole de L dissout, est :

$$n = \frac{s}{C_0} \cong s_0 \left(\frac{1}{C_0} + \frac{1}{K_{a_1} + s_0}\right) = \frac{s_0}{C_0} + \frac{1}{\frac{K_{a_1}}{s_0} + 1}$$

si on est en excès de H * par rapport à $L_{t},\,\frac{s_{0}}{C_{0}}<<1$

Alors
$$n \equiv \frac{1}{\frac{Ka_1}{1 + \frac{So}{So}}}$$

est au maximum égal à 1 (la stoechiométric de $\rm IL^+)$; mais, si le $\rm pk_{a_1}$ n'est pas nettement supérieur à colog s_0 , la réaction de solubilisation :

$$H^{T} + L + HL^{T}$$

n'est jamais totale et le nombre n mesuré ne représente pas la stoechiométrie de l'espèce majoritaire ${\rm H_nL}^{n+}$.

Il s'agit d'un cas particulier, plus simple, que celui déjà exposé pour la formation de HL^+ et H_2L^{2+} .

Ici, la seule réaction est

de constante d'équilibre $\beta_1 = \frac{ML}{ML}$

l'absorbance mesurée à la longueur d'onde λ_i pour colog M = pM_i est

Bj

$$Y_{ij} = \alpha_i A_j + (1 - \alpha_i)$$
$$\alpha = \frac{L}{C_0}$$
ML

$$1 - \alpha = \frac{1}{C_0}$$

 A_{j} et B_{j} sont les absorbances des espèces pures L et ML, donc à la concentration $C_{\rm O}.$

Alors
$$\beta_1 = \frac{1-\alpha}{M-\alpha} \approx \frac{1}{M} \left(\frac{1}{\alpha} - 1\right)$$

donc $\alpha = \frac{1}{1+\beta_1 M}$
d'autre part $\alpha_i = \frac{Y_{ij} - B_j}{A_j - B_j}$ et $1 - \alpha_i = \frac{A_j - Y_{ij}}{A_j - B_j}$

On peut calculer β_1 comme moyenne de $\beta_{1,i,i}$

$$B_{1,i,j} = \frac{1}{M_i} \frac{A_j - Y_i}{Y_{ij} - B_j}$$

avec la pondération déjà utilisée et M \approx M₊

Sans cette approximation, on peut connaître M à partir des mesures expérimentales : And the second s

 $M_t = M + ML$ $C_o = L + ML$

et donc

The second se

$$M = M_{t} - C_{o} + L = M_{t} - C_{o} (1 - \alpha)$$

On prend pour M_{i} , la moyenne des M_{ij} ,

$$M_{ij} = M_t - C_0 \frac{A_j - Y_{ij}}{A_j - B_j}$$

et
$$\beta_{1,i,j} = \frac{1}{M_t} \frac{A_j - Y_{ij}}{Y_{ij} - B_j} \frac{1}{1 - \frac{C_0}{M_t} \frac{A_j - Y_{ij}}{A_j - B_j}}$$

avec les notations précédentes,

$$\mathbf{D}^{\mathrm{L}} = \frac{\overline{\mathrm{L}}}{\mathrm{L} + \mathrm{ML}} = \frac{\overline{\mathrm{L}}}{\mathrm{L}(1 + \beta_{1} \mathrm{M})} = \frac{\mathbf{D}_{\mathrm{O}}^{\mathrm{L}}}{1 + \beta_{1} \mathrm{M}}$$

donc log $D^{L} = \log D_{O}^{L} - \log (1 + \beta_{1} M)$ avec la pondération déjà explicitée, on prend β_{1} , la moyenne des $\beta_{1,i}$

$$\boldsymbol{\beta}_{1,i} = \frac{1}{M_i} \left(\frac{D_o^L}{D_i^L} - 1 \right)$$

en général M ≅ M_t

Sinon

$$M_t = M + ML = N + (L_{t.aq} - L) = M + (L_{t.aq} - \frac{L}{D_0^L})$$

III - 7. * Etude de la deshydration d'un métal M, par un solvant, S (§.1.3.2.d.)

in 11 start

Si la réaction de déshydratation :

 $pS + M (H_2O)_{n+m} \approx m H_2O + M (H_2O)_n S_p$

suit la loi d'action de masse dans le solvant :

$$K = \frac{M (H_2O)_{n+m}}{H_2O^m M(H_2O)_n Sp}$$

On note

$$\alpha = \frac{M(H_2O)_{n+m}}{M_t}$$

alors

$$\frac{M(H_2O)_n Sp}{M_t} = 1 - \alpha$$

et

soit

$$K = \frac{\alpha}{M_2 O^m (1 - \alpha)} = \frac{1}{M_2 O^m (\frac{1}{\alpha} - 1)}$$
$$\frac{1}{\alpha} = 1 + \frac{1}{K + M_2 O^m}$$

et

$$\log(\frac{1}{\pi} - 1) = pK + m P H_2 0$$

d'autre part $Y_{ij} = \alpha_i A_j + 1 (1 - \alpha_i) B_j$

permet de calculer α_i à partir des variations spectrales de M en fonction de pH₂O ; où A_j et B_j sont les absorbances de M(H₂O)_{n+m} et M(H₂O)_n S_p purs, donc à la concentration M₊.

III - 8. * Etude de la polymérisation d'un acide organique, HA, en le dosant par de la potasse aqueuse (§.II.1.2.a.)

Un acide organique est dosé suivant la réaction

 $n (\widetilde{HM})_{m} + mn K^{\dagger} \stackrel{2}{\leftarrow} mn H^{\dagger} + n (\widetilde{KA})_{m}$

où la base est ajoutée en phase aqueuse dont la force ionique est maintenue constante, et l'acide reste en phase organique où il peut être polymérisé, majoritairement sous forme $(\overline{HA})_m$ et $(\overline{KA})_n$, soit :

Egur www.

 $KA_{t} \cong n (KA)_{n}$ et $HA_{t} \cong m (HA)_{m}$ $K_{a} = K_{a}K^{+} = \frac{H^{+}}{H^{-}} = \text{constante}$ on note $\beta_n = \frac{(\overline{KA})n}{\overline{KA}n}$ et $k_m = \frac{(\overline{HA})m}{\overline{HA}m}$ $C_{c} = KOH_{+}$ et $C = A_{+}^{-}$

on note

En début de dosage, la quantité de (KA)_n formé provient de la dissociation de l'acide (HA)_m ; si c'est un acide faible donc

1/m

$$H_{o}^{\dagger} = KA_{t} = n (\overline{KA})_{n} = n \beta_{n} \overline{KA}^{n}$$

et

$$C \cong HA_t \equiv m (\overline{HA})_m = m k_m \overline{HA}^m$$

alors :

:

$$K_{\Delta}^{*} = H_{0}^{*} \left(\frac{H_{0}^{*}}{n \beta_{n}}\right)^{1/n} \left(\frac{mk_{m}}{C}\right)^{1/n}$$

$$H_{0}^{*} = \left(K_{\Delta}^{*} \left(n \beta_{n}\right)^{1/n} \left(\frac{C}{mk_{m}}\right)^{1/m}\right)^{-\frac{1}{1+\frac{1}{n}}}$$

et pH₀ = $\frac{n}{M+1} \left[pK_0^* - \frac{1}{n} (\log n + \log \beta_n) + \frac{1}{m} (\log m + \log k_m^{-1} \log c) \right]$ $pH_0 = A - \frac{n}{m(n+1)}$ log c où A = $\frac{1}{n+1}$ (n pKd - log β_n + $\frac{n}{m}$ log k_m - log $n + \frac{n}{m}$ log m)

dans la zone tampon, pratiquement toute la potasse versée a été consommée donc : Contraction of the second

$$C_0 = KA_t = n (\overline{KA})_n = n\overline{KA}^n \beta_n$$

alors C = HA_t + KA_t \cong C_o + m (HA)_m = C_o + m k_m HA^m K'_a = H⁺_{Co} ($\frac{C_o}{1 - 1}$)^{1/n} ($\frac{mk_m}{1 - 1}$)^{1/m}

$$\operatorname{comme} \quad \frac{C_0^{1/n}}{(C - C_0)} 1/m = \frac{1}{C^{1/m}} \frac{C_0}{(1 - \frac{C_0}{C})^{1/m}} = \frac{\left(\frac{C_0}{C}\right)^{1/n}}{\left(1 - \frac{C_0}{C}\right)^{1/m}} = \frac{\left(\frac{C_0}{C}\right)^{1/m}}{\left(1 - \frac{C_0}{C}\right)^{1/m}} C^{\frac{1}{m} - \frac{1}{m}}$$

$$pH_{\underline{Co}} = B + C \left(\frac{Co}{C} \right) + \left(\frac{1}{n} - \frac{1}{m} \right) \log C$$

où
$$B = pK'_{a} - \frac{1}{n} \log n + \frac{1}{m} \log m - \frac{1}{n} \log \beta_{n} + \frac{1}{m} \log k_{m}$$

et $C(\frac{C_{o}}{C}) = \frac{1}{n} \log \frac{C_{o}}{C} - \frac{1}{m} \log (1 - \frac{C_{o}}{C})$

Ainsi $pH_0 = f (\log HA_t)$ est une droite de pente

$$\frac{1}{m} \frac{1}{1+\frac{1}{n}}$$

et pH_{C_0} , une droite de pente $\frac{1}{C}$, $\frac{1}{n}$, $\frac{1}{m}$

III - 9. * Extraction par un échangeur cationique polymérisé (§.II.1.2.c.)

** Modèle classique (d'après [154])

$$M^{s+} + (\overline{HA})_p \neq \overline{M} + s H^{t}$$

où $\overline{M} = \overline{MA_s} (\overline{HA})_{p-s}$

la constante d'extraction,

 $K_{ex} = \frac{\overline{M} H^{+S}}{M^{S+} (\overline{HA})_{p}}$

permet de prévoir

$$\log D = \log \frac{K_{ex}}{P} + s_{p}H + \log p(HA)_{p}$$

et si (HA)_t = p(HA)_p; log D = log $\frac{K_{ex}}{P}$ + s pH + log HA_t

** Formation de complexes successifs

$$M^{S^{+}} + \overline{M}_{j-1} \stackrel{\star}{\leftarrow} \overline{M}_{j} + S H^{+}$$

où $\overline{M}_{j} = (\overline{MAS})_{j} (HA)_{p-Sj}$

les constantes d'extraction

$$\kappa_{ex}^{j} = \frac{\overline{M}_{j}}{M^{s+}\overline{M}_{j-1}}$$

permettent de prévoir D, en effet ,

$$D = \sum_{j} \frac{\overline{M_{j}}}{M^{S+}} = \sum_{j} K_{ex}^{j} \frac{\overline{M_{j-1}}}{H^{+S}}$$

L'extraction est donc la somme de plusieurs mécanismes ; si un des mécanismes est prépondérent cela signifie que :

pour tout $i \neq j_{\mathfrak{s}} K_{ex}^{\mathbf{j}} \overline{M}_{\mathbf{j}-1} \ll K_{ex}^{\mathbf{i}} \overline{M}_{\mathbf{i}-1}$ et log $D \approx \log \frac{K_{ex}^{\mathbf{i}}}{p} + s pH + \log \beta \overline{M}_{\mathbf{i}-1}$

On voit alors que, sauf dans le cas particulier où $K_{ex}^1 \approx K_{ex}^0$ pour tout i, le mécanisme d'extraction dépend de la qualité de métal extrait.

Si $K_{ex}^i = K_{ex}^0$ pour tout i, et que le degré de polymérisation, p, ne varie pas avec la quantité de métal extrait, on retrouve la formule précédente :
$$\log D = \log \frac{K_{ex}^{0}}{p} + s pH + \log HA_{t}$$

Dans ce cas, le polymère (des micelles, par exemple) est une nouvelle phase puisque que la quantité, M_t , de métal qui y est dissoute ne modifie pas ses propriétés. On retrouve alors l'expression ci-dessus (voir §.II.1.2.c.).

ł

111 - 10. Influence dela saturation d'un échangeur cationique sur ses propriétés extractives (§.11.1.2.d.)

La constante d'extraction d'un échangeur cationique, HA, permet de prévoir :

$$D = K_{ex} - \frac{HA^{m}}{H^{+}}$$

Quand il est saturé en métal, l'approximation $\widetilde{HA}\cong HA_t$ n'est plus vérifiée.

On note :

$$D_{\infty} = K_{ex} \frac{HA_{t}^{m}}{H^{*}}$$
où $\widetilde{M} = \overline{M X_{n} A_{s-nt} HA_{m-s+nt}}$
l'expression de D quand n $\overline{M}_{t} << HA_{t}$
alors $\frac{\overline{HA}}{HA_{t}} = (\frac{D}{D_{\infty}})^{1/m}$
comme $M_{t} = \overline{M} + M^{S*} = \overline{M} (1 + \frac{1}{D}),$

$$HA_{t} = \overline{HA} + m\overline{M} = HA_{t} (\frac{D}{D_{\infty}})^{1/m} + m \frac{M_{t}}{1 + 1/D}$$
soit $M_{t} = \frac{HAt}{m} (1 - (\frac{D}{D_{\infty}})^{1/m}) (1 + \frac{1}{D})$

- 198 -

- 199 -

F² and the second se second sec

IV. NOTATIONS

Sector Sector

Ln	lanthanide
An	actinide
M	élément métallique
, s+	cation de charge s
ophen	orthophénantroline
ру	pyridine
bipy	bipyridine -2,2'
terpy	terpyridine -2,2',2"
TPTZ (ou L pour ligand)	tripyridy1 -(2)-2,4,6-triazine-1,3,5
ТРушТ	tripyrimidyl -(2)-2,4,6-triazine-1,3,5
II a BrC ₁₀	acide a bromocaprique CH ₃ (CH ₂) ₇ CH Br COOH
HDNNS	acide dinonylnaphtalène sulfonique [$(C_{9}H_{19})_2$ ($C_{10}H_{7}$)]SO ₃ H
HA	pour HaBrC10 ou HDNNS
ε _λ	absortivité molaire à la longueur d'onde λ , exprimée en manomètres.
[X]	concentration de X en phase aqueuse
[X]	concentration de X en phase organique
[X] _t	concentration totale de X = concentration de X introduite. S'il y a deux phases elles sont, sauf indication contraire, de volumes égaux ; les concentrations sont ramenées au volume d'une de ces phases : donc la moitié du vo- lume total.
^[X] t	concentration totale de X dans la phase or~ ganique.
[X] _{t.aq}	concentration totale de X dans la phase aqueuse.
D, D ^X	[X] _t
	[x] _{t.aq}
D_0, D_0^{X}	
D	D à dilution infinie, c'est-à-dire quand [X]

BIBLIOGRAPHIE

.

<u>[</u> 1 <u></u> 7	R.FITOUSSI Thèse - Strasbourg - France (1980) CEA-R-5152
[2]	D.DAMIEN Thèse - Clermont-Ferrand - France (1976) CEA-R-4783 - n° 218 Série E CNRS A.O. 12620
<u> </u>	C.CUILLERDIER Thèse – Paris VI – France (1980) – CEA-R-5140
<u> </u>	G.LE MAROIS Thèse – Paris VI – France – (1979) – CEA-R-5030
<u> </u>	G.CHARLOT Les réactions chimiques en solution. L'analyse qualitative minérale. Masson éditeurs, Paris (1969)
[6]	L.SILLEN, A.MARTELL Stability constants of metal-ion complexes. The Chem.Soc.Special Publication n° 17 London (1964) - Supplement n° 1, Special Publication n° 25, London (1971) dans la même collection, Supplement n° 2 : D.PERRIN Part.B - Organic ligands - IUPAC Chemical data series, n° 22 Pergamon Press, Paris (1979) E.HOGFELDT Part.A : Inorganic ligands. IUPAC Chemical data series, n° 21 Pergamon Press, Paris (1982)
[י]	C.MUSIKAS, C.CUILLERDIER, M.MARTEAU, F.COUFFIN BIST - CEA 217 (1976), 55-66.
<u> </u>	C.MUSIKAS, C.CUILLERDIER, S.CHACHATY, M.MARTEAU 8ème conférence des Actinides CEA, Conf.4317, Liège – France (1978)
<u>[</u> 97	J.J.CHRISTENSEN, D.J.EATOUCH, R.M.IZATT Chem. Rev., <u>74</u> , 3 (1974), 351-384
<u>[</u> 10]	G.R.NEWKOME, J.D.SAUER, J.M.ROPER, D.C.HAGER Chem. Rev., <u>77</u> ,4 (1977), 513-597
[11]	N.F.CURTIS Coord. Chem. Rev., <u>3</u> (1968), 3-47
<u>/</u> 12 <u></u> 7	D.H.BUSCH, K.FARMERY, V.GOEDKEN, V.KATOVIC, A.C.MELNYK, C.R.SPERATI, N.TOKEL Adv. Chem. Ser. (1971), 44-78
[13]	J.J.CHRISTENSEN, J.O.HILL, R.M.IZATT Science, 174, 4008 (1971) 459-467

Ś

[14]L.F.LINDOY Chem. Soc. Rev. 4 (1975) 421-441 [15] D.H.BUSCH Acc. Chem. Res. 11 (1978) 392-400 <u>/</u>16_7 J.M.GIRODEAU Thèse 1977, Strasbourg (France) [17] D.K.CABBINESS, D.W.MARGERLM J. Am. Chem. Soc. 91, 23 (1969) 6540-6541 / 18] F.P.HINZ, D.W.MARGERUM J. Am. Chem. Soc. 96, 15 (1974) 4993-4994 [19] G.F.SMITH, D.W.MARGERLIM J. Chem. Soc., Chem. comm. (1975) 807-808 1207 M.KODAMA, E.KIMURA J. Chem. Soc., Dalton (1976) 116 [21] F.ARNAUD-NEU, M.J.SCHWING-WEILL, J.JUILLARD, R.LOUIS, R.WEISS Inorg. Nucl. Chem. lett., 14 (1978) 367-373 / 22 7 F.P.HINZ, D.W.MARGERUM Inorg. Chem., 13, 12 (1974) 2941-2949 1237 D.C.WEATHERBURN, E.J.BILLO, J.P.JONES, D.W.MARGERUM Inorg. Chem., 9, 16 (1970) 1557-1559 <u>[</u>24<u>7</u> L.Y.MARTIN, L.J.DEHAYES, L.J.ZOMPA, D.H.BUSCH J. Am. Chem. Soc., 96, 12 (1974) 4046-4048 Y.HUNG, L.Y.MARTIN, S.C.JACKELS, A.MARTIN TAIT, D.H.BUSCH J.Am.Chem.Soc., <u>99</u>, 12 (1977) 4029-4039 Γ257 [26] L.J.DEHAYES, D.H.BUSCH Inorg. Chem. 12, 7 (1973) 1505-1513 [27] L.J.DEHAYES, D.H.BUSCH Inorg. Chem. 12, 9 (1973) 2010-2015 $\lceil 28 \rceil$ J.E.FALK Porphyrins and Metallopor Elsevier Publ.Co. Amsterdam, London, New-York (1964) [29] Nouvelle édition : K.M. SMITH. Elsevier Scientific Publishing Co (1975), Amsterdam, Oxford, New-York. [30] M.MOMENTEAU, J.MISPELTER, B.LOOCK, J.M.LHOSTE Can. J. Chem. 56 (1978) 2598-2604 [31] L.G.WARNER, N.J.ROSE, D.H.BUSCH J. Am. Chem. Soc. 90, 25 (1968) 6938

- [52] D.D.WATKINS, D.P.RILEY, J.A.STONE, D.H.BUSCH Inorg. Chem., <u>15</u>, 2 (1976) 387-393
- [33] L.Y.MARTIN, C.R.SPERATI, D.H.BUSCH
 J. Am. Chem. Soc. <u>99</u>, 9 (1977) 2968-2981
- [34] A. PEZESHK, F.T. GREENAWAY, G. VINCOW Inorg. Chem., 17, 12 (1978) 3421-3425

ł

- [35]] J.W.BUCHLER, W.KOKISH, P.D.SMITH Structure and Bonding, 34, (1978) 79-134
- [36] J.CHAIT, J.R.DILWORTH, R.L.RICHARDS Chem. Rev., 78, 6 (1978) 589-625
- <u>/</u>37<u>7</u> J.C.DABROWIAK, D.H.BUSCH Inorg. Chem., 14, 8 (1975) 1881-1887
- [38] A.MARTIN TAIT, F.V. LOVECCHIO, D.H.BUSCH Inorg. Chem., <u>16</u>, 9 (1977) 2206-2212
- [39] K.FARMERY, D.H.BUSCH Inorg. Chem., <u>11</u>, 12 (1972) 2901-2906
- [40] S.C.JACKELS, K.FARMERY, E.K.BAREFIELD, N.J.ROSE, D.H.BUSCH Inorg. Chem., 11, 12 (1972) 2893-2901
- [41] C.J.HIPP, L.F.LINDOY, D.H.BUSCH Inorg. Chem., 11, 9 (1972) 1988-1994
- [42] E.K.BAREFIELD, F.V.LOVECCHIO, N.E.TOKEL, E.OCHIAI, D.H.BUSCH Inorg. Chem., <u>11</u>, 2 (1972) 283-288
- / 43/ N.F.CURTIS J.Chem. Soc. (1964) 2644-2650
- [44] J.L.KARN, D.H.BUSCH Inorg. Chem., <u>8</u>, 5 (1969) 1149-1153
- [45] V.KATOVIC, L.T.TAYLOR, F.L.URBACH, W.H.WHITE, D.H.BUSCH Inorg. Chem., 11, 3 (1972) 479-483
- [46] N.F.CURTIS J. Chem. Soc. (A) (1971) 2834-2838
- [47] C.J.HIPP, D.H.BUSCH J. Chem. Soc., Chem. comm. (1972) 737-738
- [48] R.A.KOLINSKI, B.KORYBUT DASZKIEWICZ Bulletin de l'Académie Polonaise des sciences, série des sciences chimiques, XXII, 8 (1974) 665-672
- [49] E.K.BAREFIELD, D.H.BUSCH Inorg. Chem., 0, 1 (1971) 108-114
- [50]7 N.F.CURTIS Chem. Comm., 23 (1966) 881-883

<u>[</u> 51 <u>]</u>	E.K.BAREFIELD Inorg. Chem., <u>11</u> , 9 (1972) 2273-2274
<u>/</u> 52 <u>/</u>	J.C.DABROWIAK, F.V.LOVECCHIO, V.L.GOEDKEN, D.H.BUSCH J. Am. Chem. Soc., <u>94</u> , 15 (1972) 5502-5504
<u>[</u> 53]	V.L.GOEDKEN, D.H.BUSCH J. Am. Chem. Soc., <u>94</u> , 21 (1972) 7355-7363
<u>[</u> 54 <u>7</u>	A.MARTIN TAIT, D.H.BUSCH Inorg. Chem., <u>15</u> , 1 (1976) 197-203
<u>[</u> 55 _]	T.J.TRUEX, R.H.HOLM J. Am. Chem. Soc., <u>94</u> , 13 (1972) 4529-4538
<u>/ 56</u> 7	S.D.MALONE, J.F.ENDICOTT J. Phys. Chem., <u>76</u> , 16 (1972) 2223-2229
<u>[</u> 57]	D.P.RILLEMA, J.F.ENDICOTT, E.PAPACONSTANTINOU Inorg. Chem., <u>10</u> , 8 (1971) 1739-1746
<u>[</u> 58 <u>]</u>	P.S.BRYAN, J.C.DABROWIAK Inorg. Chem., <u>14</u> , 2 (1975) 296-299
<u>[</u> 59 <u>]</u>	A.M.TAIT, D.H.BUSCH Inorg. Chem., <u>16</u> , 4 (1977) 966-968
<u></u> 60_7	Voir référence /14/ page 430
C 61 J	G.C.QORDON, S.M.PENG. V.L.QOEDKEN Inorg.Chem., <u>17</u> , 12 (1978) 3578-3586
<u>/</u> 62 <u>/</u>	N.TAKVORYAN, K.FARMERY, V.KATOVIC, F.V.LOVECCHIO, E.S.GORE, L.B.ANDERSON, D.H.BUSCH J. Am. Chem. Soc., <u>96</u> , 3 (1974) 731-742
[63]	F.V.LOVECCHIO, E.S.GORE, D.H.BUSCH J. Am. Chem. Soc., <u>96</u> , 10 (1974) 3109-3118
<u>/</u> 64_7	J.VASILEVSKIS, D.C.OLSON Inorg. Chem., <u>10</u> , 6 (1971) 1228-1235
<u>_65_7</u>	D.C.OLSON, J.VASILEVSKIS Inorg. Chem., <u>10</u> , 3 (1971) 463-470
<u>_66</u> _	P.S.BRYAN, J.M.CALVERT Inorg. Nucl. Chem. Lett., <u>13</u> (1977) 615-619
<u></u> 67_7	J.C.DABROWIAK, L.A.NAFIE, P.S. BRYAN, A.T.TORKELSON Inorg. Chem., <u>16</u> , 3 (1977) 540-544
<u>/_68_</u> /	D.ANN RYAN, J.H.ESPENSON, D.MEYERSTEIN, W.A.MULAC Inorg. Chem., <u>17</u> , 12 (1978) 3725-3726
<u>/~69</u> 7	R.R.GAGNE, J.L.ALLISON, C.C.LISENSKY Inorg. Chem., <u>17</u> , 12 (1978) 3563-3571
<u> </u>	A.ANTTPAS, D.DOLPHIN, M.COUTERMAN, E.C.JOHNSON J. Au. Chem. Soc., <u>100</u> , 24 (1978) 7705-7709

- [71] J.H. FORSBERG, T.MOELLER Inorg. Chem. 8, 4 (1969) 883-888
- [72] L.J.CHARPENTIER, T.MOELLER J.Inorg. Nucl. Chem., <u>32</u>, (1970) 3575-3584
- [73] J.E.Mc DONALD, T.MOELLER J. Inorg. Nucl. Chem., <u>39</u> (1977) 2287-2288
- <u>[74_7</u> C.P.WONG, R.F.VENTEICHER, De W.HORROCKS J.Am.Chem.Soc., <u>96</u>, 22 (1974) 7149-7150
- [75] W.De HORROCKS, C.P.WONG J.Am.Chem.Soc., <u>98</u>, 23 (1976) 7157-7162
- [76] M.E.HARMAN, F.A.HART, M.B.HURSTHOUSE, G.P.MOSS, P.R.RAITHBY J. Chem. Soc., Chem. Comm. (1976) 396-397
- [77] A.CASSOL, A.SEMINARO, G. de PAOLI Inorg. Nucl. Chem. lett., <u>9</u> (1973) 1163-1168
- 78_7 E.B.BUCHANAN, D.CRICHTON, J.R.BACON Talanta, <u>13</u>, (1966) 903-909
- [79] G.K. PAGENKOPF, D.W. MARGERUM Inorg. Chem. 7, 12 (1968) 2514-9
- [80] J.PRASAD, N.C.PETERSON Inorg. Chem., 10, 13 (1971) 88-90
- [81] M.J.JAMOHAMED, G.H.AYRES Angl. Chém. <u>44</u>, 14 (1972) 2263-8
- [82] F.H. FRASER, P. EPSTEIN, D.J. MACERO Inorg. Chem., 11, 9 (1972) 2031-4
- [83.7] P.COLLINS, H.DIEHL, G.SMITH Anal. Chem., 31, 11 (1959) 1862-7
- [84] H.DIEU, E.EUCHANAN, G.SMITH Anal. Chem. 32, 9, (1960) 1117-9
- <u>6857</u> P.COLLINS, H.DIEHL Anal. Chim. Acta, <u>22</u> (1960) 125-7
- [86] B.KRATOCHVIL, M.WHITE Anal. Chem., 37, 1 (1965) 111-3
- [87] B.STEPHENS, H.SUDDETH Anal. Chem., <u>39</u>, 12 (1967) 1478-80
- / 88 / J.FITZGERALD, J.BECK Anal. letters, 3, 10 (1970) 531-6
- [89] G.NAMAGAWA, H.WADA Talanta, 20 (1973) 829-33
-

•---

1

<u>/</u> 90 <u>/</u>	B.STEPHENS, H.FELKEL, W.SPINELLI Anal. Chem., <u>46</u> , 6 (1974) 692-6
<u>_</u> 91_7	V.GIL , R.GILLARD, P.WILLIAMS, R.VAGG, E.WATTON Trans. Met. Chem., <u>4</u> (1979) 14-7
<u>/</u> 92 _ /	W.EABRY, G.AYRES Anal. Chem., <u>40</u> , 10 (1968) 1499-501
<u> </u>	Y.SASAKI Anal. Chim. Acta, <u>98</u> , (1978) 535-42
<u> </u>	N.TOKEL-TAKVORYAN, R.HEMINGWAY, A.BARD J. Am. Chem. Soc., <u>95</u> , 20 (1973) 6582-9
<u>/</u> 95 <i>]</i>	T.SAJI, S.AOYAGUI J. Electroanal. Chem., <u>110</u> , (1980) 329-34
<u>/</u> 96 <u>/</u>	H.COODWIN, R.SYLVA, R.VAGG, E.WATTON Aust. J. Chem., <u>22</u> (1969) 1605-11
<u> </u>	R.VAGG, R.WARRENER, E.WATTON Aust. J. Chem., <u>22</u> , (1969) 141-52
<u>[</u> 98 <u>]</u>	R.VAGG, R.WARRENER Aust. J. Chem., <u>20</u> , (1967) 1841-57
<u>/</u> 99 <u>/</u>	E.LERNER, S.LIPPARD J. Am. Chem., Soc., <u>98</u> , 17 (1976) 5397-8
/_100 <i>_</i> 7	E.LERNER, S.LIPPARD Inorg. Chem., <u>16</u> , 6 (1977) 1546–51
[101]	E.LERNER, S.LIPPARD Inorg. Chem., <u>16</u> , 6 (1977) 1537-46
<u>[102]</u>	G.BARCLAY, R.VAGG, E.WATTON Acta. Cryst. <u>B 33</u> , (1977) 3777-81
<u>/</u> 103 <u>/</u>	G.BARCLAY, R.VAGG, E.WATTON Acta. Cryst. <u>B.34</u> , (1978) 1833-7
<u>[104</u>]	G.BARCLAY, R.VAGG, E.WATTON Aust., J. Chem., <u>22</u> (1969) 643-5
<u>[105]</u>	G.BARCLAY, R.VAGG, E.WATTON Acta. Cryst. <u>B.33</u> , (1977) 3487-91
<u>[106]</u>	P.WILLIAMS Trans. Met. Chem., <u>4</u> , (1979) 24-7
<u>/</u> 107 <u>7</u>	R.GILLARD, P.WILLIAMS Trans. Met. Chem., <u>4</u> , (1979) 18-23
<u>_108</u> _7	R.GILLARD, P.WILLIAMS Trans. Met. Chem., <u>3</u> , (1978) 334-6
<u>[</u> 109 <u>]</u>	E.LERNER Thèse 77-14, 823, Columbia University Ph.D., Chem.inorg.,USA (1977)

•

<u>/ 110 7</u>	T.ROCHE, R.WILKINS J. Am. Chem. Soc., <u>96</u> , 16 (1974) 5082-6
[111]	D.DURHAM, G.FROST, F.HART J. Inorg. Nucl. Chem. <u>31</u> (1969) 571-4
<u>_112</u> _	J.KINGSTON, E.KRANKOVITZ, R.MAGEE, E.WATTON, R.WAGG Inorg. Nucl. Chem. letters, <u>5</u> (1969) 445-8
/ 113 /	F.CASE, T.KASPER J. Am. Chem. Soc., <u>78</u> (1956) 5842-4
/_114_7	F.CASE, E.KOFT J. Am. Chem. Soc., <u>81</u> (1959) 905-6
<u>/</u> 115 _ 7	V.GIL , A.PEREIRA Tetrahedron, <u>27</u> (1971) 5619-22
<u>/</u> 116_7	Y.SASAKI Bunseki Kagaku , <u>27</u> , 11 (1978) 729-31 (en japonais)
<u>/_</u> 117_7	I.S.KIRIN, A.B.KOLYADIN, A.A.LYCHEV J. Struct. Chem., <u>15</u> , (1974) 415–418 – traduction de Zhurnal Strukturnoi Khimii, <u>15</u> , 3 (1974) 486–490
<u>/_118_</u> /	A.GIEREN, W.HOPPE Chem. Comm. (1971) 413-414
<u>/</u> 119 <u>7</u>	T.MASHIKO, M.E.KASTNER, K.SPARTALIAN, W.R.SCHEIDT, C.A.REED J. Am. Chem. Soc., <u>100</u> , 20 (1978) 6354-6362
<u>/</u> 120 <u>/</u>	J.L.HDARD, M.J.HAMOR, T.A.HAMOR, W.S.CAUCHEY J. Am. Chem. Soc., <u>87</u> , 11 (1965) 2312-2319
<u>/</u> 121_7	M.R.CHURCHILL, A.H.REIS Inorg. Chem., <u>11</u> , 8 (1972) 1811-1818
<u>[</u> 122 <u>]</u>	M.R.CHURCHILL, A.H.REIS Inorg. Chem., <u>11</u> , 10 (1972) 2209-2306
<u>/</u> 123 <u>7</u>	M.R.CHURCHILL, A.H.REIS Chem. Comm., (1970) 879-880
<u>[124]</u>	R.W.HAY, B.JERAGH, S.F.LINCOLS, G.H.SEARLE Inorg. Nucl. Chem., Lett., <u>14</u> (1978) 435-440
<u>/</u> 125 <u>/</u>	Y.YOSHIKAWA Chemistry letters (1978) 109-112
<u>/</u> 126]	J.E.RICHMAN, T.J.ATKINS J. Am. Chem., Soc., <u>96</u> , 7 (1974) 2268-2270
<u>/</u> 127 _ /	E.B.FLEISHER, W.HAWKINSON Inorg. Chem., <u>7</u> , 11 (1968) 2312-2316
<u>[</u> 128]	M.M.BISHOP, J.LEWIS, T.D.O'DONOGHUE, P.R.RAITHBY, J.N.RAMSDEN

J. Chem. Soc., Chem. Comm. (1978) 828-829

a airea

<u>[</u> 129 <i>]</i>	M.M.BISHOP, J.LEWIS, T.D.O'DONOGHUE, P.R.RAITHBY J. Chcm. Soc., Chem. Comm., (1978) 476-478
/[130]/	N.W.ALCOCK, D.C.LILES, M.Mc PARTLIN, P.A.TASKER J. Chem. Soc., Chem. Comm., (1974) 727-728
[131]]	L.F.LINDOY, D.H.BUSCH Inorg. Chem., <u>13</u> , 10 (1974) 2494-2498
[132]]	J.D.CURRY, D.H.BUSCH J. Am. Chem., Soc., <u>86</u> , (1964) 592–594
[133]	S.M. NELSON, P.BRYAN, D.H.BUSCH Chem. Comm., <u>18</u> , (1966) 641-642
<u>[</u> 134 <u>]</u>	S.M.NELSON, D.H.BUSCH Inorg. Chem., <u>8</u> , 9 (1969) 1859-1863
[135]	E.FLEISHER, J.HAWKINSON J. Am. Chem. Soc., <u>89</u> , 3 (1967) 720-72
[136]]	M.G.B. DREW, A.HAMID BIN OTHMAN, S.M.NELSON J. Chem. Soc., Dalton, (1976) 1394-1399
<u>[</u> 137 <u>]</u>	D.St.C.BLACK, I.A. Mc.LEAN Inorg. Nucl. Chem. Lett., <u>6</u> , (1970) 675-678
<u>/</u> 138_7	L.F.LINDOY, D.H.BUSCH J. Am. Chem. Soc., <u>91</u> , 17 (1969) 4690-4691
∠ 139 _ ∕	P.A.TASKER, E.B.FLEISHER J. Am. Chem. Soc., <u>92</u> , 24 (1970) 7072-7077
<u>/</u> 140 <i>]</i> /	E.B.FLEISHER, P.A.TASKER Inorg. Nucl. Chem. Lett., <u>6</u> , (1970) 349-353
/_141_7	L.F.LINDOY, D.H.BUSCH Chem. Comm., (1968) 1589-1590
[142]	R.A.BERGER, E.LE COFF Tetrahedron lett., <u>44</u> , (1978) 4225-4228
<u>[</u> 143]	S.BOULHASSA Thèse, Orsay - France (1981)
<u>/</u> 144 _/	G.CHARLOT, TREMILLOM Les réactions chimiques dans les solvants et les sels fondus. Gauthiers-Villard, Paris (1963)
<u>/</u> 145 _ /	F.COUFFIN Potentiels d'oxydo-réduction des éléments lanthanides et acti- nides dans les solvants organiques. Bibliographic CEA-BIB-233 (1980) Commissariat à l'Energie Ato- mique (France)
<u>[</u> 146]]	F.COUFFIN Thèse, Paris VI - France (1979)

-

- / 147 7 G. CHARLOT Les méthodes de la chimie analytique - analyse quantitative minérale. Sème édition. Masson éditeur, Paris (1966). Il existe aussi une 6ème édition (1974) / 1487 D.H.HOBART Thèse DOE/ER/04 447-124, Juin 1981. Université de Tennessee, Knoxville. <u>[</u>149<u></u>] C.MADIC Thèse, Paris VI, France (1975) - CEA-R-4702-CNAS: AO-11-418 / 150 7 J.L.SABOT Thèse, Paris VI, France (1978) / 151 7 G.COTE Thèse, Paris VI, France (1980) / 152 7 H.D.HARMON Thèse ORNLTM 3486 (1971) /1537 R.F.REKKER The hydrophobic fragmental constant Elsevier, Amsterdam (1977) [154] G.Y.MARKOVITS, G.R.CHOPPIN Solvent extraction with sulfonic acids.dans : Ion exchange and solvant extraction. A series of Advances. ed. J.A.MARINSKY et Y.MARCUS/M.DEKKER/ New-York H.WENNERSTROM, B.LINDMAN Micelles Physical chemistry of surfactant association. [155] Phys., Rep., 52, 1, (1979) 1-86 / 156 / B. LINDMAN, H. WENNERSTRÖM Micelles. Amphiphile agregation in aqueous solution. Topics in current chemistry, 93(1981)1-83. F.L.BOSCHKE éditeur (Berlin) [157]7 V. GITMANN The domor-acceptor approach to molecular interactions. (1978) PENLM Press (New York) / 158 7 H.M.N.H. IRVING Application of the solubility concept in liquid-liquid extraction dans Ion exchange and solvent extraction. A series of Advances ed. J.A.Marinsky et Y.Marcus/M.Dekker (New York) 6,(1974), 139-187. /1597 W. KLOTZER Monatsh , 87, 526 (1956) /_160_7 E.OCHI. I., H. YAMANKA, Pharm. 3u11., 3, 173 (1955) [161] B. GUILLAUME B.I.S.T., CEA, 217, 31-46 (1976)
- [162] E.A.CUELLAR, T.J.MARKS Inorg. Chem., 20, 3766-70 (1981)

÷Ę

[163] W.HAGE (édit.) Compte-rendu "2ème réunion technique sur la transmutation nucléaire des actinides". Italie (1980) Publiée par la CEE . -

- G.CHOPPIN, J.RYDBERG
 Actinides in perspective. Proceeding of the actinide 1981
 Conference. Edité par N.M.EDELSTEIN. Pergamon Press, Paris p. 593-594
 Les passages cités se réfèrent à une communication faite à cette conférence :
 C.MUSIKAS, P.VITORGE, G. LE MAROIS, R.FITOUSSI, C.CUILLERDIER
 Comparison of the affinity of trivalent actinide and lanthanide for nitrogen and sulfur donors
 Actinides 1981. Abstracts p.265-7, Lawrence Berkeley Laboratory University of California
- [165]] J.MASSALIX, J.F.DESREUX J. Am. Chem. Soc., 104, 2967-72, (1982)
- [166]7 Résultats non publiés
- / 167 // Y.MARCUS, A.S.KERTES Ion exchange and solvent extraction of metal complexes Willey-interscience, London (1969)
- [168] T.SEKINE, Y.HASEGAWA Solvent extraction chemistry-fundamentals and applications Marcel Dekker, New York (1977)
- [169] P.G.DE GENNES, C.TAUPIN J. Phys. Chem., 86, 2294-1304, (1982)
- [170]7 R.CASTAINGS, J.TEILLAC, J.ANCELLIN, J.BENARD, J.DUPORT, C.FREJACQUES, R.GUILLALMONT, J.LEFEVRE, E.MOUSTACCI, J.P.SHAPIRA, J.C.ZERBIB, P.ZETIWOOG Rapport du groupe de travail sur la gestion des combustibles irradiés. Ministère de la recherche et de l'industrie SCSIN. Paris Décembre 1981 - Novembre 1982
- [171] 7 W.W.SCHULZ The chemistry of americium ERDA Techn. Inf.Center, Oak Ridge, Tennessee USA (1976) TID-26971 National Techn.Inf.Serv. US Dt Commerce Springfield, Virginia 22161
- <u>[172]</u> D.C.MOODY, R.A.PENNEMAN, K.V.SALAZAR Inorg.Chem., 18, 208-9 (1979)
- [173_7 D.C.MOODY, H.J.ZOZULIN, R.V.SALAZAR Inorg. Chem., 21, 3856-7 (1982)
- [174] J.MASSAUX, J.F.DESREUX, C.DELCHAMBRE, G.DUYCKAERTS Inorg, Chem., 19, 1893-6 (1980)

- <u>L</u>⁻¹⁷⁵<u>7</u> V.K.MAJECTIC, G.R.NEWKOME dans Topics in Current Chem., <u>106</u>, 79-118, (1982)
- [176] N.V.GERBELEU, F.K.ZHOVMIR Rus.J.Inorg.Chem., 27, 309-14 (1982) (traduit de Zhur. Neorg.Khim. 547-57)

_

- <u>[177]</u> A. VAN DALEN Rapport RCN-141 (78 pages) (1971)
- [178] J.D.J. BACKER-DIRKS, C.J. GRAY, F.A.HART, M.B.HURSTHOUSE, B.C.SHOOP J.C.S. Chem. Comm. 774-5 (1979)

Manuscrit reçu le 28 mai 1984

Achevé d'imprimer par le CEA, Service de Documentation, Saclay Août 1984

-

DEPOT LEGAL 3ème trimestre 1984

ISSN 0429 - 3460

La diffusion des rapports et bibliographies du Commissariat à l'Energie Atomique est assurée par le Service de Documentation, CEN-Saclay, 91191 Gif-sur-Yvette Cédex, (France)

Reports and bibliographies of the Commissariat à l'Energie Atomique are available from the Service de Documentation, CEN-Saclay, 91191 Gif-sur-Yvette Cédex, (France)

Edité par le Service de Documentation Centre d'Etudes Nucléaires de Saclay 91191 GIF-sur-YVETTE Cédex (France) 2