1985

Chemical equilibria in actinide carbonate systems

I. Grenthe, P. Robouch and P. Vitorge

CEA CEN-FAR, DRDD/SESD/SCPCS, LCh, Fontenay aux Roses, , France

By spectrophotometric and potentiometric methods it is shown that trimers are formed in media of high ionic strength (3 M NaClO₄) and total concentrations of hexavalent actinides higher than 10^{-3} M. The equilibrium constants for the reactions

$$3 \text{ MO}_2(\text{CO}_3)_3^{4-} \rightarrow (\text{MO}_2)_3(\text{CO}_3)_6^{6-} + 3 \text{ CO}_3^{2-}$$

are $\lg K(U) = -11.3 \pm 0.1$; $\lg K(Np) = -10.1 \pm 0.1$; $\lg K(Pu) = -7.4 \pm 0.2$. It is demonstrated that one of the cations of the trimer can be exchanged with another actinide cation: the equilibrium constants for the reactions

$$2 \text{ UO}_2(\text{CO}_3)_3^{4-} + \text{MO}_2(\text{CO}_3)_3^{4-} \rightarrow (\text{UO}_2)_2\text{MO}_2(\text{CO}_3)_6^{6-} + 3 \text{ CO}_3^{2-}$$

are lg K = -11.3 ± 0.1 , -10.0 ± 0.2 and -8.8 respectively for M = U, Np, Pu. Thus, polynuclear complexes can be efficient solution "carriers" for other hexavalent actinides in waste disposal. Some properties of the solid phases MO₂CO₃(s) are discussed.

Experimental studies of chemical equilibria of americium (III, IV) are reviewed: in carbonate media americium(III) species are $AmCO_3^+$, $Am(CO_3)_2^-$, $Am(CO_3)_3^{3^-}$, $(Am_2(CO_3)_3)_s$ and $(NaAm(CO_3)_2)_s$; for americium-(IV) Ig $\beta_5 \approx 40$.

In 3 M NaClO₄ solubility measurements of neptunium(V) show that $\lg \beta_1 = 5.09$, $\lg \beta_2 = 8.15$, $\lg \beta_3 = 10.46$, $\lg Ks(NaNpO_2CO_3) = -10.56$ and $\lg Ks(Na_3NpO_2(CO_3)_2) = -12.44$; ionic strength corrections are proposed on the basis of these results.