Stability of pentavalent plutonium.

H.Capdevila, P.Vitorge

CEA DCC/SCS/SGC, Fontenay-aux-Roses, France

Pu(V) stability in (0.1 or1 M) Na,H (0.1 to 3 M) CIO_4 and in environmental conditions is discussed. It is shown that PuO_2^+ can be stable for pH = 1 to 8. Redox potentials and activity coefficients are reviewed, and it is concluded that there was too few experimental determinations of $E(PuO_2^+/Pu^{4+})$. The disproportionation of PuO_2^+ and Pu^{4+} are then measured spectrophotometrically, and extrapolated to I=0 ionic strength according to the SIT:

	$lg(K_V)$ value	lg(Kl _∨)			
[K _V (mol/l) ⁻⁴]					$[K_{IV} (mol/I)^{-4}]$
0.1 M	0.5 M	1 M	2 M	3 M	1M
3.42	4.36	4.85	4.88	5.13	2.06

Reviewed E(Pu³⁺/Pu⁴⁺) and E(PuO₂²⁺/PuO₂⁺) are used to propose

-	E(VI/IV)	E(VI/III)	E(V/IV)	E(V/III)
(M)	(mV)	(mV)	(mV)	(mV)
0	1005	1008	1052	1031
0.5	1048	1001	1163	1058
1	1071	1015	1200	1080
2	1069	1029	1188	1088
3	1083.5	1050	1200	1108.5