Remutation de Pu<sup>4+</sup> à partir de PuO<sub>2</sub><sup>2+</sup> et Pu<sup>3+</sup> en milieu perchlorique Résultats des dosages spectrophotométriques

Cette annexe est constituée des résultats spectrophotométriques récapitulés dans le tableau suivant et des courbes représentatives de la variation des différentes concentrations ainsi que du rapport  $Q_{IV}^{-1}$  en fonction du temps.

On rappelle que les espèces  $PuO_2^{2+}$ ,  $Pu^{4+}$  et  $Pu^{3+}$  sont dosées aux longueurs d'onde 831 nm, 476 nm et 600 nm les uns après les autres, les concentrations sont ensuite interpolées pour calculer  $Q_{IV}$  ce qui introduit une erreur quand les concentrations évoluent rapidement (au début) et explique l'imprécision du bilan de Pu.

Nous utilisons les notations suivantes :

$$\begin{split} & \text{mM pour millimolaire} \\ & \text{C}_{\text{Pu}} = [\text{PuO}_2^{2^+}] + [\text{Pu}^{4_+}] + [\text{Pu}^{3_+}] \\ & \text{Q}_{\text{IV}}^{-1} = \frac{[\text{Pu}^{4_+}]^3}{[\text{Pu}^{3_+}]^2 [\text{PuO}_2^{2^+}] [\text{H}^+]^4} \end{split}$$

 $[H^+] = 1,3M$  est déduit de mesure potentiométrique, l'électrode de verre est étalonnée en concentration.

Quand  $Q_{IV}$  est stable , on considère que l'équilibre est atteint et que la valeur numérique de ce rapport est égal à la constante thermodynamique de l'équilibre. On mesure :

 $\log K_{IV}(1M) = -2,09 \pm 0,5$ 

L'incertitude tient compte du fait qu'on n'est pas certain d'avoir atteint l'équilibre. L'écart type sur lg K<sub>IV</sub> varie de 0,004 à 0,007 suivant le nombre de points pris en compte, c'est-àdire le temps pendant lequel on considère l'équilibre atteint. Pendant l'expérience le potentiel d'oxydoréduction calculé diminue de 1026 à 1005 mV / ENH, lg[PuO<sub>2</sub><sup>+</sup>] diminue de -5,5 à -6,5.

| Temps   | [PuO <sub>2</sub> <sup>2+</sup> ] | [Pu <sup>3+</sup> ] | [Pu <sup>4+</sup> ] | C <sub>Pu</sub> | $Q_{IV}^{-1}$         |
|---------|-----------------------------------|---------------------|---------------------|-----------------|-----------------------|
| (jours) | (mM)                              | (mM)                | (mM)                | (mM)            | (mol/l) <sup>-4</sup> |
| 0       | 0,58                              | 0,88                | 0,23                | 1,69            | 0,01                  |
| 0,56    | 0,47                              | 0,53                | 0,79                | 1,8             | 1,17                  |
| 1,11    | 0,42                              | 0,43                | 0,97                | 1,81            | 3,88                  |
| 1,67    | 0,37                              | 0,37                | 1,07                | 1,82            | 7,77                  |
| 2,22    | 0,34                              | 0,32                | 1,19                | 1,85            | 15,39                 |
| 2,78    | 0,32                              | 0,28                | 1,27                | 1,86            | 26,17                 |
| 3,33    | 0,3                               | 0,26                | 1,33                | 1,89            | 38,49                 |
| 3,89    | 0,29                              | 0,25                | 1,37                | 1,9             | 38,49                 |
| 4,44    | 0,28                              | 0,24                | 1,4                 | 1,91            | 47,58                 |
| 5       | 0,27                              | 0,23                | 1,42                | 1,91            | 57,39                 |
| 5,56    | 0,26                              | 0,23                | 1,44                | 1,93            | 64,84                 |
| 6,11    | 0,24                              | 0,23                | 1,46                | 1,93            | 73,11                 |
| 6,67    | 0,24                              | 0,23                | 1,47                | 1,93            | 80,09                 |
| 7,22    | 0,23                              | 0,23                | 1,48                | 1,93            | 86,70                 |
| 7,78    | 0,22                              | 0,23                | 1,49                | 1,93            | 90,17                 |
| 8,33    | 0,21                              | 0,23                | 1,5                 | 1,94            | 94,62                 |
| 8,89    | 0,2                               | 0,23                | 1,51                | 1,94            | 98,66                 |
| 9,44    | 0,19                              | 0,23                | 1,51                | 1,94            | 102,44                |
| 10      | 0,19                              | 0,24                | 1,52                | 1,94            | 105,92                |
| 10,56   | 0,18                              | 0,24                | 1,53                | 1,95            | 109,06                |
| 11,11   | 0,17                              | 0,24                | 1,54                | 1,95            | 111,85                |
| 11,67   | 0,16                              | 0,25                | 1,54                | 1,95            | 114,27                |
| 12,22   | 0,16                              | 0,25                | 1,55                | 1,96            | 116,34                |
| 12,78   | 0,15                              | 0,26                | 1,55                | 1,96            | 118,09                |
| 13,33   | 0,15                              | 0,26                | 1,55                | 1,96            | 119,55                |
| 13,89   | 0,14                              | 0,27                | 1,55                | 1,96            | 120,75                |
| 14,44   | 0,13                              | 0,27                | 1,56                | 1,96            | 121,74                |
| 15      | 0,13                              | 0,28                | 1,56                | 1,96            | 122,56                |
| 15,56   | 0,12                              | 0,28                | 1,56                | 1,96            | 123,22                |
| 16,11   | 0,11                              | 0,29                | 1,56                | 1,96            | 123,71                |
| 16,67   | 0,11                              | 0,3                 | 1,55                | 1,96            | 124,02                |
| 17,22   | 0,1                               | 0,3                 | 1,55                | 1,96            | 124,15                |
| 1/,/8   | 0,1                               | 0,31                | 1,55                | 1,96            | 124,11                |
| 18,33   | 0,09                              | 0,32                | 1,54                | 1,96            | 123,89                |
| 10,09   | 0,09                              | 0,33                | 1,54                | 1,90            | 123,5                 |
| 20      | 0,08                              | 0,34                | 1,54                | 1,90            | 122,93                |
| 20 56   | 0,08                              | 0,35                | 1,54                | 1,90            | 122,21                |
| 20,50   | 0,00                              | 0,30                | 1,55                | 1,90            | 110 10                |
| 21,11   | 0,07                              | 0,37                | 1,55                | 1,97            | 118.02                |
| 21,07   | 0,07                              | 0,30                | 1,52                | 1,97            | 117,1                 |
| 22,22   | 0.06                              | 0.4                 | 1,52                | 1,97            | 116.68                |
| 23.33   | 0.06                              | 0.41                | 1,51                | 1,97            | 117.04                |
| 23.89   | 0.05                              | 0.42                | 1,5                 | 1,97            | 118.28                |
| 24.44   | 0.05                              | 0.43                | 1,49                | 1,97            | 120.23                |
| 25      | 0.04                              | 0,44                | 1,48                | 1,97            | 122,91                |
| 25,56   | 0,04                              | 0,45                | 1,48                | 1,97            | 126,43                |
| 26,11   | 0,04                              | 0,46                | 1,47                | 1,96            | 130,97                |
| 26,67   | 0,03                              | 0,47                | 1,46                | 1,96            | 136,75                |
| 27,22   | 0,03                              | 0,48                | 1,45                | 1,96            | 144,05                |
| 27,78   | 0,03                              | 0,49                | 1,44                | 1,96            | 153,31                |
| 28,33   | 0,02                              | 0,5                 | 1,43                | 1,96            | 165,11                |
| 28,89   | 0,02                              | 0,51                | 1,42                | 1,95            | 180,31                |

| 29,44 | 0,02 | 0,52 | 1,41 | 1,95 | 200,22 |
|-------|------|------|------|------|--------|
| 30    | 0,01 | 0,53 | 1,4  | 1,95 | 226,87 |





Evolution de la constante apparente  $Q_{IV}^{-1}$ 



#### Dismutation de PuO<sub>2</sub><sup>+</sup> Résultats des dosages spectrophotométriques en milieu perchlorique de pH voisin de 1

Nous récapitulons dans cette annexe les résultats des différentes expériences réalisées à différentes forces ioniques. Pour chacun des milieux étudiés ( $[H^+] = 0,1M$  et  $[ClO_4^-] = xM$ ) l'annexe est constituée :

d'un tableau où l'on trouve tous les dosages spectrophotométriques en fonction du temps

de figures représentant les variations des concentrations et de la constante apparente  $Q_{v}^{\ -1}$ 

On rappelle que l'équilibre étudié est :

$$3 \text{ PuO}_2^+ + 4 \text{ H}^+ \text{ "o Pu}^{3+} + 2 \text{ PuO}_2^{2+} + 2 \text{ H}_2\text{O}$$

et que l'expression de  $Q_v^{-1}$  est la suivante :

$$Q_v^{-1} = \frac{[PuO_2^+]^3 [H^+]^4}{[Pu^{3+}] [PuO_2^{2^+}]^2} \quad (mol/l) \ ^4$$

et  $C_{Pu} = [PuO_2^{2+}] + [PuO_2^{+}] + [Pu^{3+}]$ 

Quand l'équilibre est atteint la valeur obtenue pour  $Q_V$  correspond à  $K_V$ , constante de l'équilibre précédemment défini. Les valeurs de (-lg[H<sup>+</sup>]) mesurés au départ pour la solution de  $PuO_2^+$  et en fin d'expérience pour le mélange des 3 espèces sont identiques. Les calculs sont effectués suivant le même principe que pour  $K_{IV}$  (Annexe 1). On remarque que la concentration calculée de  $Pu^{4+}$  reste constante quand l'équilibre est pratiquement atteint, ce qui est certainement dû à la précipitation de  $Pu(OH)_4$  dont le produit de solubilité ainsi calculé est de l'ordre de  $10^{-0,8}$ .

#### Résultats expérimentaux obtenus pour $lgK_V(I)$ à différentes forces ioniques en milieux perchloriques

| I (M)                            | 0         | 0,1            | 0,5            | 1              | 2              | 3              |
|----------------------------------|-----------|----------------|----------------|----------------|----------------|----------------|
| lgK <sub>V</sub> (unité molaire) |           | $3,42 \pm 0,5$ | $4,36 \pm 0,5$ | $4,84 \pm 0,5$ | $4,88 \pm 0,5$ | $4,92 \pm 0,5$ |
| I (m)                            | 0         | 0,10           | 0,51           | 1,05           | 2,21           | 3,50           |
| lgK <sub>V</sub> (unité molale)  | 2,6 ± 0,5 | 3,41 ± 0,5     | 4,31 ± 0,5     | 4,76 ± 0,5     | 4,7 ± 0,5      | 4,66 ± 55      |

| Force ionique $I = 0.1M$ |                  |                 |                     |                 |                    |  |  |
|--------------------------|------------------|-----------------|---------------------|-----------------|--------------------|--|--|
|                          |                  | -1ø[H           | $(^{+}) = 1$        |                 |                    |  |  |
|                          |                  |                 |                     |                 |                    |  |  |
| Temps                    | $[PuO_{2}^{2+}]$ | $[PuO_{2}^{+}]$ | [Pu <sup>3+</sup> ] | C <sub>Pu</sub> | 0 <sup>-1</sup>    |  |  |
| (jours)                  | (mM)             | (mM)            | (mM)                | (mM)            | $(\text{mol/l})^4$ |  |  |
| 0                        | 0.09             | 2.1             | 0.12                | 2.31            | 8.65E-1            |  |  |
| 0.04                     | 0.11             | 2.03            | 0.14                | 2,31            | 4 82F-1            |  |  |
| 0.75                     | 0.33             | 1 84            | 0.16                | 2 33            | 3 47E-2            |  |  |
| 0.94                     | 0,35             | 1,04            | 0.19                | 2,55            | 1 88E-2            |  |  |
| 1 77                     | 0,57             | 1,7             | 0.28                | 2,20            | 3 57E-3            |  |  |
| 2.04                     | 0,50             | 1 38            | 0.3                 | 2,5             | 2 33E-3            |  |  |
| 4 75                     | 0.81             | 1,00            | 0.38                | 2,29            | 2,33E-3            |  |  |
| 5.81                     | 0.81             | 1,05            | 0,30                | 2,20            | 4 00F-4            |  |  |
| 6.04                     | 0.81             | 1,01            | 0.36                | 2,21            | 5,05E-4            |  |  |
| 6.77                     | 0.81             | 1,07            | 0,30                | 2,24            | 4 00F-4            |  |  |
| 7 75                     | 0.8              | 1               | 0.41                | 2,21            | 3 75E-4            |  |  |
| 8 77                     | 0.79             | 0.97            | 0.43                | 2,21            | 3,75E-4            |  |  |
| 11 73                    | 0.77             | 0,97            | 0.44                | 2,17            | 3,45L-4            |  |  |
| 12.04                    | 0,77             | 0,90            | 0,44                | 2,17            | 3,57E-4            |  |  |
| 14.02                    | 0.74             | 1.04            | 0.45                | 2,19            | 4 57E-4            |  |  |
| 14,02                    | 0.72             | 0.09            | 0.47                | 2,25            | 3.94E-4            |  |  |
| 15.02                    | 0.72             | 0,99            | 0.49                | 2,10            | $3,90E_{-4}$       |  |  |
| 10.02                    | 0,71             | 1               | 0,49                | 2,19            | 3,90E-4            |  |  |
| 20.9                     | 0,63             | 0.97            | 0,55                | 2,15            | 4,40E-4            |  |  |
| 20,9                     | 0,05             | 0,97            | 0,55                | 2,15            | 4,20E-4            |  |  |
| 22,02                    | 0,61             | 0,99            | 0,58                | 2,10            | 4,56E-4            |  |  |
| 32 73                    | 0,56             | 0.9             | 0,57                | 2,17            | 4,55E-4<br>3.47E-4 |  |  |
| 32,75                    | 0,50             | 0,9             | 0,68                | 2,12            | 3,41E-4            |  |  |
| 34 77                    | 0,55             | 0.89            | 0,60                | 2,12            | 3,41E-4            |  |  |
| 35 73                    | 0.53             | 0.89            | 0.7                 | 2,12            | 3 63E-4            |  |  |
| 36.77                    | 0,53             | 0.88            | 0.72                | 2.12            | 3.42F-4            |  |  |
| 39.81                    | 0,55             | 0.88            | 0.74                | 2,13            | 3,42E-4            |  |  |
| 40 77                    | 0.49             | 0.86            | 0.76                | 2.11            | 3 52E-4            |  |  |
| 41 73                    | 0.49             | 0.85            | 0.78                | 2.12            | 3 34E-4            |  |  |
| 42.77                    | 0.48             | 0.86            | 0.76                | 2.1             | 3 66E-4            |  |  |
| 46.94                    | 0.45             | 0.82            | 0.8                 | 2.07            | 3.53E-4            |  |  |
| 47.81                    | 0.44             | 0.81            | 0.82                | 2.07            | 3.41E-4            |  |  |
| 49.98                    | 0.42             | 0.81            | 0.84                | 2.07            | 3.51E-4            |  |  |
| 53.98                    | 0.41             | 0.77            | 0.89                | 2.07            | 3.10E-4            |  |  |
| 56.75                    | 0.38             | 0.77            | 0.92                | 2.07            | 3.37E-4            |  |  |
| 57.96                    | 0.38             | 0.76            | 0.93                | 2.07            | 3.30E-4            |  |  |
| 61                       | 0,36             | 0,76            | 0.96                | 2,32            | 3,44E-4            |  |  |
| 62,77                    | 0,34             | 0,76            | 0.97                | 2,07            | 3,78E-4            |  |  |
| 63,83                    | 0,34             | 0,74            | 0.99                | 2,07            | 3,51E-4            |  |  |
| 64,85                    | 0,34             | 0,74            | 0,99                | 2,07            | 3,67E-4            |  |  |
| 67,77                    | 0,33             | 0,78            | 0,97                | 2,08            | 4,63E-4            |  |  |
| 68,79                    | 0,32             | 0,73            | 1,02                | 2,07            | 3,81E-4            |  |  |
| 69,85                    | 0,3              | 0,72            | 1,04                | 2,06            | 3,82E-4            |  |  |
| 72,04                    | 0,29             | 0,72            | 1,08                | 2,09            | 4,05E-4            |  |  |
| 76,06                    | 0,27             | 0,7             | 1,14                | 2,11            | 4,22E-4            |  |  |
| 78                       | 0,26             | 0,68            | 1,16                | 2,1             | 3,97E-4            |  |  |
| 78,83                    | 0,25             | 0,68            | 1,16                | 2,09            | 4,10E-4            |  |  |
| 90,85                    | 0,2              | 0,59            | 1,28                | 2,07            | 3,92E-4            |  |  |
| 98,88                    | 0,2              | 0,59            | 1,32                | 2,11            | 3,93E-4            |  |  |

Dismutation de PuO<sub>2</sub><sup>+</sup> Dosage spectrophotométrique des différents degrés d'oxydation en fonction du temps



# Dismutation de PuO<sub>2</sub><sup>+</sup>

Evolution de la constante apparente  $Q_v^{-1}$ 

Force ionique I = 0.1M



| Force ionique $I = 0.5M$ |                |             |                     |          |                      |  |  |
|--------------------------|----------------|-------------|---------------------|----------|----------------------|--|--|
| $-lg[H^+] = 0.88$        |                |             |                     |          |                      |  |  |
|                          |                |             |                     |          |                      |  |  |
| Temps                    | $[PuO_2^{2+}]$ | $[PuO_2^+]$ | [Pu <sup>3+</sup> ] | $C_{Pu}$ | $Q_v^{-1}$           |  |  |
| (jours)                  | (mM)           | (mM)        | (mM)                | (mM)     | (mol/l) <sup>4</sup> |  |  |
| 0                        | 0,02           | 1,65        | 0                   | 1,67     |                      |  |  |
| 0,03                     | 0,02           | 1,64        | 0                   | 1,66     |                      |  |  |
| 0,14                     | 0,39           | 1,11        | 0,16                | 1,66     | 1,68E-2              |  |  |
| 0,25                     | 0,61           | 0,81        | 0,24                | 1,66     | 1,77E-2              |  |  |
| 0,35                     | 0,65           | 0,78        | 0,23                | 1,66     | 1,48E-3              |  |  |
| 0,46                     | 0,69           | 0,72        | 0,25                | 1,66     | 8,99E-4              |  |  |
| 0,57                     | 0,69           | 0,73        | 0,24                | 1,66     | 9,97E-4              |  |  |
| 0,68                     | 0,76           | 0,65        | 0,26                | 1,67     | 5,49E-4              |  |  |
| 0,75                     | 0,74           | 0,65        | 0,27                | 1,66     | 5,36E-4              |  |  |
| 1                        | 0,78           | 0,59        | 0,29                | 1,66     | 3,33E-4              |  |  |
| 1,71                     | 0,84           | 0,51        | 0,28                | 1,63     | 2,00E-4              |  |  |
| 1,83                     | 0,85           | 0,51        | 0,3                 | 1,66     | 1,74E-4              |  |  |
| 2,71                     | 0,87           | 0,42        | 0,3                 | 1,59     | 9,71E-5              |  |  |
| 3                        | 0,88           | 0,38        | 0,31                | 1,57     | 6,99E-5              |  |  |
| 5,71                     | 0,87           | 0,33        | 0,3                 | 1,5      | 4,54E-5              |  |  |
| 6,02                     | 0,87           | 0,33        | 0,32                | 1,52     | 4,36E-5              |  |  |
| 6,75                     | 0,87           | 0,33        | 0,32                | 1,52     | 4,41E-5              |  |  |
| 7,81                     | 0,87           | 0,37        | 0,31                | 1,55     | 6,42E-5              |  |  |
| 8,75                     | 0,86           | 0,41        | 0,31                | 1,58     | 8,89E-5              |  |  |
| 9,33                     | 0,85           | 0,39        | 0,32                | 1,56     | 7,29E-5              |  |  |
| 13,92                    | 0,82           | 0,39        | 0,32                | 1,53     | 7,85E-5              |  |  |
| 15,83                    | 0,8            | 0,39        | 0,35                | 1,54     | 7,65E-5              |  |  |
| 16,79                    | 0,81           | 0,34        | 0,38                | 1,53     | 4,75E-5              |  |  |
| 28,75                    | 0,7            | 0,32        | 0,4                 | 1,42     | 3,82E-5              |  |  |
| 41,67                    | 0,65           | 0,32        | 0,49                | 1,46     | 4,90E-5              |  |  |
| 50                       | 0,58           | 0,32        | 0,57                | 1,47     | 4,99E-5              |  |  |
| 62,5                     | 0,53           | 0,27        | 0,6                 | 1,4      | 3,34E-5              |  |  |

# Evolution de la constante apparente $\mathbf{Q}_{\mathbf{v}}^{\text{-1}}$

Force ionique I = 0.5M



**Dismutation de PuO<sub>2</sub><sup>+</sup> Dosage spectrophotométrique des différents degrés d'oxydation en fonction du temps** Force ionique I = 0,5M



| Force ionique I = 1M |                |             |                     |                 |                      |  |  |
|----------------------|----------------|-------------|---------------------|-----------------|----------------------|--|--|
| $-lg[H^+] = 1,04$    |                |             |                     |                 |                      |  |  |
| Tamana               | 2.             |             | 577 <b>2</b> 1 7    | C               | 1                    |  |  |
| Temps                | $[PuO_2^{2+}]$ | $[PuO_2^+]$ | [Pu <sup>3+</sup> ] | C <sub>Pu</sub> | $Q_v^{-1}$           |  |  |
| (jours)              | (mM)           | (mM)        | (mM)                | (mM)            | (mol/l) <sup>4</sup> |  |  |
| 0                    | 0,1            | 2,35        | 0,33                | 2,78            | 2,94E-1              |  |  |
| 0,1                  | 0,22           | 2           | 0,43                | 2,65            | 2,59E-2              |  |  |
| 0,2                  | 0,46           | 1,59        | 0,57                | 2,62            | 2,28E-3              |  |  |
| 0,3                  | 0,74           | 1,26        | 0,68                | 2,68            | 3,78E-4              |  |  |
| 0,4                  | 0,93           | 0,99        | 0,73                | 2,65            | 1,09E-4              |  |  |
| 0,5                  | 1,02           | 0,86        | 0,74                | 2,62            | 5,80E-5              |  |  |
| 0,8                  | 1,11           | 0,73        | 0,76                | 2,6             | 2,86E-5              |  |  |
| 0,9                  | 1,2            | 0,73        | 0,75                | 2,68            | 2,48E-5              |  |  |
| 1                    | 1,24           | 0,65        | 0,76                | 2,65            | 1,63E-5              |  |  |
| 1,1                  | 1,25           | 0,62        | 0,77                | 2,64            | 1,41E-5              |  |  |
| 1,2                  | 1,25           | 0,61        | 0,74                | 2,6             | 1,34E-5              |  |  |
| 1,3                  | 1,25           | 0,64        | 0,75                | 2,64            | 1,51E-5              |  |  |
| 1,4                  | 1,25           | 0,65        | 0,76                | 2,66            | 1,60E-5              |  |  |
| 1,5                  | 1,25           | 0,61        | 0,76                | 2,62            | 1,32E-5              |  |  |
| 1,6                  | 1,25           | 0,61        | 0,76                | 2,62            | 1,32E-5              |  |  |
| 2,8                  | 1,26           | 0,62        | 0,74                | 2,62            | 1,43E-5              |  |  |
| 5,8                  | 1,25           | 0,61        | 0,74                | 2,6             | 1,35E-5              |  |  |
| 16,7                 | 0,87           | 0,47        | 0,61                | 1,95            | 1,55E-5              |  |  |

## Evolution de la constante apparente $Q_v^{-1}$

Force ionique I = 1M



Dismutation de PuO<sub>2</sub><sup>+</sup> Dosage spectrophotométrique des différents degrés d'oxydation en fonction du temps



|         | Force ionique I = 2M |                      |                     |                 |                      |  |
|---------|----------------------|----------------------|---------------------|-----------------|----------------------|--|
|         |                      | -lg[H <sup>+</sup> ] | ] = 0,97            |                 |                      |  |
|         |                      |                      |                     |                 |                      |  |
| Temps   | $[PuO_2^{2+}]$       | $[PuO_2^+]$          | [Pu <sup>3+</sup> ] | C <sub>Pu</sub> | $Q_{v}^{-1}$         |  |
| (jours) | (mM)                 | (mM)                 | (mM)                | (mM)            | (mol/l) <sup>4</sup> |  |
| 0       | 0,83                 | 0,9                  | 0,44                | 2,17            | 3,14E-4              |  |
| 0,8     | 1,17                 | 0,46                 | 0,47                | 2,1             | 1,99E-5              |  |
| 1,8     | 1,19                 | 0,37                 | 0,42                | 1,98            | 1,13E-5              |  |
| 2,8     | 1,2                  | 0,37                 | 0,44                | 2,01            | 1,08E-5              |  |
| 7,8     | 1,14                 | 0,35                 | 0,45                | 1,94            | 9,28E-6              |  |
| 9       | 1,12                 | 0,39                 | 0,47                | 1,98            | 1,33E-5              |  |
| 9,8     | 1,12                 | 0,4                  | 0,49                | 2,01            | 1,41E-5              |  |
| 12,9    | 1,09                 | 0,38                 | 0,52                | 1,99            | 1,16E-5              |  |
| 13,9    | 1,06                 | 0,37                 | 0,52                | 1,95            | 1,11E-5              |  |
| 15,8    | 1,05                 | 0,42                 | 0,56                | 2,03            | 1,58E-5              |  |
| 19,8    | 1                    | 0,38                 | 0,59                | 1,97            | 1,22E-5              |  |
| 23      | 0,95                 | 0,38                 | 0,66                | 1,99            | 1,18E-5              |  |

# Evolution de la constante apparente $Q_v^{-1}$

Force ionique I = 2M



**Dismutation de PuO<sub>2</sub><sup>+</sup> Dosage spectrophotométrique des différents degrés d'oxydation en fonction du temps** Force ionique I = 2 M



| Force ionique I = 3M |                  |             |                     |          |                      |  |  |
|----------------------|------------------|-------------|---------------------|----------|----------------------|--|--|
|                      | $-lg[H^+] = 1,1$ |             |                     |          |                      |  |  |
| T                    | 2.               |             |                     | C        | 1                    |  |  |
| Temps                | $[PuO_2^{2+}]$   | $[PuO_2^+]$ | [Pu <sup>3+</sup> ] | $C_{Pu}$ | $Q_v^{-1}$           |  |  |
| (jours)              | (mM)             | (mM)        | (mM)                | (mM)     | (mol/l) <sup>4</sup> |  |  |
| 0                    | 0,03             | 1,68        | 0,18                | 1,89     | 9,24E-1              |  |  |
| 1,71                 | 0,82             | 0,5         | 0,38                | 1,7      | 2,00E-5              |  |  |
| 2,88                 | 0,82             | 0,5         | 0,38                | 1,7      | 1,99E-5              |  |  |
| 4,92                 | 0,81             | 0,49        | 0,41                | 1,71     | 1,83E-5              |  |  |
| 8,73                 | 0,76             | 0,47        | 0,46                | 1,69     | 1,55E-5              |  |  |
| 9,96                 | 0,75             | 0,46        | 0,47                | 1,68     | 1,46E-5              |  |  |
| 15,92                | 0,67             | 0,42        | 0,59                | 1,68     | 1,10E-5              |  |  |
| 16,88                | 0,68             | 0,46        | 0,6                 | 1,74     | 1,40E-5              |  |  |
| 16,92                | 0,68             | 0,47        | 0,61                | 1,76     | 1,51E-5              |  |  |
| 17,71                | 0,68             | 0,42        | 0,59                | 1,69     | 1,07E-5              |  |  |
| 19,71                | 0,67             | 0,43        | 0,61                | 1,71     | 1,21E-5              |  |  |
| 23,71                | 0,65             | 0,41        | 0,63                | 1,69     | 1,03E-5              |  |  |
| 25,71                | 0,59             | 0,44        | 0,69                | 1,72     | 1,42E-5              |  |  |
| 26,71                | 0,59             | 0,39        | 0,7                 | 1,68     | 9,70E-6              |  |  |
| 29,71                | 0,57             | 0,38        | 0,73                | 1,68     | 9,42E-6              |  |  |
| 31,71                | 0,58             | 0,4         | 0,73                | 1,71     | 1,08E-5              |  |  |

## Evolution de la constante apparente $Q_v^{-1}$

Force ionique I = 3M



Dismutation de PuO<sub>2</sub><sup>+</sup> Dosage spectrophotométrique des différents degrés d'oxydation en fonction du temps



Etude de l'influence de la force ionique I et de la température T sur le potentiel du couple  $PuO_2^{2+} / PuO_2^{+}$ 

#### Mesure par voltammétrie cyclique

Les potentiels sont mesurés en milieu  $HClO_4$  0,5 M pour I = 0,5 M ou

 $([H^+] = 1M, [ClO_4^-] = x M, [Na^+] = x-1 M)$  pour I > 0,5M, par rapport à une électrode Ag/AgCl plongeant dans une solution de perchlorate de sodium de même force ionique que la solution de plutonium . La concentration en chlorure est fixée à 0,02mol/kg (par NaCl) afin de fixer le potentiel de l'électrode Ag-AgCl. Les solutions de travail ont une concentration en plutonium de 10<sup>-3</sup> mol/l environ. L'enregistrement est réalisé entre 200 et 800 mV/Ag-AgCl avec une vitesse de balayage fixée à 90 mV/s.

 $E_{1/2}(T,I)$ : Potentiel de 1/2 vague mesuré par voltammétrie cyclique à la température T et force ionique I. Ce potentiel est assimilé au potentiel normal apparent ce qui revient à négliger la différence des coefficients de diffusion de l'oxydant et du réducteur [87 RIG], le terme correctif est de l'ordre de +0,5 mV [87 RIGa]. Ce potentiel est mesuré par rapport à une l'électrode de référence Ag/AgCl.

 $E_j$ : Potentiel existant de part et d'autre de la jonction dans laquelle plonge la référence. Ce potentiel est essentiellement dû à la différence de concentration en H<sup>+</sup> entre les deux solutions.

Les régressions linéaires en fonction de la température sont possibles car on trouve une entropie constante, ce qui est donc une approximation consistant à négliger la différence de capacité calorifique. La prise en compte de ce dernier paramètre n'améliore pas l'ajustement, on ne peut donc pas le calculer simplement ; mais sa contribution à la variation de E avec la température doit rester inférieure à l'incertitude de la contribution entropique. Ceci induit une incertitude sur  $\Delta S^{\circ}$ ; aussi sur E°, car on peut le déduire soit des mesures à 25°C, soit des régressions linéaires en fonction de la température, les incertitudes proposées en tiennent compte ; la reproductibilité des mesures est généralement de 4 à 7 mV.

Pour chaque force ionique on détermine, par régression linéaire,  $(\frac{\partial E_{1/2}}{\partial T})(T,I)_p = \frac{\Delta S}{F}(T,I)$ pour le couple PuO<sub>2</sub><sup>2+</sup>/PuO<sub>2</sub><sup>+</sup>; ces paramètres incluent les variations du potentiel de

l'électrode de référence avec la température : -0,54mV/°C à I=0 [85 BAR], à I plus élevé, la contribution du terme de Debye-Hückel est de l'ordre de 0,02mV/°C [?? GIF] ; celle du terme du second viriel n'est pas connue, à titre de comparaison elle serait de -0,11mV/°C (-0,22, -0,43 et -0,35) [?? GIF] en milieu NaCl 0,5M (respectivement 1, 2 et 3 M)

|                                                                 | x = 0,5M   | $\mathbf{x} = 1\mathbf{M}$ | x = 2M      | x = 3M      |
|-----------------------------------------------------------------|------------|----------------------------|-------------|-------------|
| $\frac{\partial E_{1/2}}{(\overline{\partial T})_p}(T)$ (mV/°C) | 0,4 ± 0,10 | 0,39 ± 0,10                | 0,35 ± 0,10 | 0,30 ± 0,10 |

|       | $[E_{1/2}(T,I)-E_j]$ (mV/Ag-AgCl) |                            |        |        |  |
|-------|-----------------------------------|----------------------------|--------|--------|--|
| T(°C) | x = 0.5M                          | $\mathbf{x} = 1\mathbf{M}$ | x = 2M | x = 3M |  |
| 5     | 546,5                             | 540                        | 564    | 586,5  |  |

| 5                   | 542,5 | 540   | 560   | 585   |
|---------------------|-------|-------|-------|-------|
| 10                  | 545   | 547,5 | 567   | 590   |
| 10                  | 549,5 | 543   | 564   | 589,5 |
| 10                  |       |       | 567   |       |
| 15                  | 554   | 548,5 | 567   | 592   |
| 15                  | 548   | 549   | 567   | 589   |
| 20                  | 553   | 552   | 567   | 594   |
| 20                  | 555,5 | 547,5 | 569   | 592   |
| 20                  | 551   | 551   | 569   |       |
| 25                  | 554   | 550   | 572   | 595   |
| 25                  | 557   | 553,5 | 569,5 | 594   |
| 25                  | 556   | 550   | 571   | 595   |
| 25                  | 552,5 | 551   |       |       |
| 30                  | 557   | 555   | 575   | 595   |
| 30                  | 554   |       | 572,5 | 596   |
| 31                  |       | 552,5 |       |       |
| 35                  | 556,5 | 558   | 575   | 598   |
| 35                  | 559   | 557   | 575,5 | 596,5 |
| 35                  | 560   | 556   |       |       |
| 36                  |       |       | 575   |       |
| 40                  | 562   | 559,5 | 576   | 599   |
| 40                  | 558   | 557,5 | 576,5 | 599,5 |
| 45                  | 563,5 | 561   | 577,5 | 599   |
| 45                  | 560   | 559   | 579   | 601   |
| 45                  |       |       | 579   |       |
| 48                  | 561,5 |       |       |       |
| 50                  | 565   | 563,5 | 580   | 601,5 |
| 50                  |       | 560   | 581   | 601   |
| 50                  |       | 560   |       |       |
| 55                  | 567   | 564,5 | 580   | 602,5 |
| 55                  |       | 561,5 | 581   |       |
| 55                  |       | 561,5 | 582   |       |
| 60                  | 569   | 565   | 581,5 | 603,5 |
| 60                  | 566,5 | 562,5 |       |       |
| 60                  |       | 564   |       |       |
| 61                  |       |       | 583   |       |
| 64                  |       |       | 584,5 |       |
| 65                  | 569   | 565   | 583   | 605   |
| E <sub>j</sub> (mV) | 31    | 28    | 16    | 18    |

Variation du potentiel du couple  $PuO_2^{2+}/PuO_2^{+}$  en fonction de T



### Détermination du potentiel standard du couple $PuO_2^{2+} / PuO_2^{+}$ Théorie de l'Interaction Spécifique (S.I.T)

Cette annexe présente les valeurs numériques et les formules permettant d'extrapoler à force ionique nulle, selon la Théorie de l'Interaction Spécifique, les valeurs expérimentales des potentiels du couple  $PuO_2^{2+} / PuO_2^+$  récapitulées dans l'Annexe N°3.

#### **Notations :**

- a et Ba<sub>j</sub> : Paramètres dépendant de la température et intervenant dans la définition du

terme de Debye et Hückel D. Leur variation avec la température est tabulée [92 GRE].

$$- D = \frac{a\sqrt{I}}{1 + Ba_j\sqrt{I}}$$
$$- A = \frac{RT \ln 10}{F}$$

| Т    | А     | а        | Ba <sub>i</sub> |
|------|-------|----------|-----------------|
| (°C) | (mV)  | (kg/mol) | (kg/mol)        |
|      |       |          |                 |
| 5    | 55,19 | 0,4913   | 1,4867          |
| 10   | 56,18 | 0,4976   | 1,4899          |
| 15   | 57,17 | 0,5012   | 1,4931          |
| 20   | 58,17 | 0,505    | 1,4968          |
| 25   | 59,16 | 0,5091   | 1,5             |
| 30   | 60,15 | 0,5135   | 1,5037          |
| 35   | 61,14 | 0,5182   | 1,5073          |
| 40   | 62,14 | 0,5231   | 1,5110          |
| 45   | 63,13 | 0,5282   | 1,5151          |
| 50   | 64,12 | 0,5336   | 1,5192          |
| 55   | 65,11 | 0,5392   | 1,5233          |
| 60   | 66,10 | 0,545    | 1,5274          |
| 65   | 67,09 | 0,5511   | 1,5315          |



Extrapolation à force ionique nulle des potentiels  $E_{1/2}(T,I)$  du couple  $PuO_2^{2+} / PuO_2^{+}$ 

 $- Y_{1/2} (T,I) = \frac{E_{1/2}(T,I)}{A} + 4D(T,I)$  cf Méthodologie pour l'établissement de la formule et Annexe N° 3 pour les valeurs numériques de  $E_{1/2}(T,I)$  (mV/Ag-AgCl) Chacune des droites précédentes correspond à la régression linéaire  $Y_{1/2} (T,I) = f(I)$  à une température donnée T de 5 à 65°C. Les résultats de ces différentes régressions linéaires à température T (c'est à dire les ordonnées à l'origine  $Y_{1/2}(T,0)$  et les pentes  $[\Delta \epsilon + \epsilon](T)$  sont récapitulés dans le tableau ci- après. Les notations employées sont les suivantes :

$$-Y_{1/2}(T,0) = \frac{E_{O/R}(T,0) - E_{Ag/AgCl}(T,0)}{A(T)} + lg m_{Cl}$$
$$- [\Delta \varepsilon + \varepsilon](T) = \varepsilon (PuO_2^{2+}, ClO_4) - \varepsilon (PuO_2^{+}, ClO_4) + \varepsilon (Na^+, Cl^-)$$

- $E_{Ag/AgCl}(T,0)$  = potentiel de la référence à force ionique nulle [85 BAR]

-  $E_{O/R}(T,0) = A(T)Y_{1/2}(T,0) + E_{Ag/AgCl}(T,0) - A(T) \lg m_{Cl}$ potentiel du couple étudié  $PuO_2^{2+}/PuO_2^+$  en mV/ENH à force ionique nulle et Température T

-  $E_{O/R}$  (25°C,0) = potentiel standard

| Т    | Y <sub>1/2</sub> (T,0) | $E_{Ag/AgCl}(T,0)$ | E <sub>O/R</sub> (T,0) | $[\Delta \varepsilon + \varepsilon] (T)$ |
|------|------------------------|--------------------|------------------------|------------------------------------------|
| (°C) |                        | (mV/ENH)           | (mV/ENH)               | (kg/mol)                                 |
| 0    |                        | 237,0              |                        |                                          |
| 5    | 10,87                  | 234,4              | 928                    | 0,280                                    |
| 10   | 10,76                  | 231,7              | 931                    | 0,276                                    |
| 15   | 10,67                  | 228,9              | 936                    | 0,257                                    |
| 20   | 10,54                  | 225,8              | 938                    | 0,246                                    |
| 25   | 10,40                  | 222,6              | 938                    | 0,253                                    |
| 30   | 10,27                  | 219,1              | 939                    | 0,254                                    |
| 35   | 10,18                  | 215,5              | 942                    | 0,235                                    |
| 40   | 10,04                  | 211,7              | 941                    | 0,244                                    |
| 45   | 9,93                   | 207,6              | 942                    | 0,236                                    |
| 50   | 9,81                   | 203,4              | 941                    | 0,243                                    |
| 55   | 9,71                   | 198,9              | 942                    | 0,221                                    |
| 60   | 9,63                   | 194,2              | 943                    | 0,261                                    |
| 65   | 9,51                   | 189,3              | 941                    | 0,220                                    |

Les valeurs inscrites en gras correspondent aux conditions standard

#### Etude de l'influence de la force ionique I et de la température T sur le potentiel du couple Pu<sup>4+</sup> / Pu<sup>3+</sup>

#### Mesure par voltammétrie cyclique

Les potentiels sont mesurés par voltamétrie cyclique par rapport à une électrode Ag/AgCl plongeant directement dans la solution de plutonium, mélange d'acide perchlorique, de perchlorate de sodium et de chlorure de sodium ([H<sup>+</sup>] = 1M, [ClO<sub>4</sub><sup>-</sup>] = x M, [Cl<sup>-</sup>]=0,02 m). L'enregistrement est réalisé entre 300 et 900mV/Ag-AgCl avec une vitesse de balayage fixée à 90mV/s. Les solutions de travail ont une concentration en plutonium de l'ordre de  $10^{-3}$  mol/l.

 $E_{1/2}(T,I)$ : Potentiel de 1/2 vague mesuré par voltamétrie cyclique à la température T et force ionique I. Ce potentiel est assimilé au potentiel normal apparent à +2 mV près (Annexe 3). Il est mesuré par rapport à une l'électrode de référence Ag/AgCl (Annexe 4).

|        | $E_{1/2}(T,I)$ (mV/Ag-AgCl) |                   |                   |  |
|--------|-----------------------------|-------------------|-------------------|--|
| T (°C) | $[ClO_{4}^{-}] =$           | $[ClO_{4}^{-}] =$ | $[ClO_{4}^{-}] =$ |  |
|        | 1M                          | 2M                | 3M                |  |
|        | (10.5                       | (20)              | (50               |  |
| 5      | 619,5                       | 639               | 650               |  |
| 10     | 630                         |                   | 655               |  |
| 10     | 023                         | 615               | 020               |  |
| 10,5   | (22.5                       | 043               |                   |  |
| 15     | 632,5                       | 653               | 665,5<br>669      |  |
| 15     | 641,3                       |                   | 671               |  |
| 20     | 644                         |                   | 670               |  |
| 20     | 044                         |                   | 680 5             |  |
| 21     | 645                         | 665               | 601               |  |
| 25     | 655                         | 673               | 681               |  |
| 25     | 055                         | 075               | 684               |  |
| 25     |                             | 672               | 004               |  |
| 30     | 660                         | 072               | 696               |  |
| 31     | 000                         |                   | 700               |  |
| 35     | 665                         | 682.5             | 705               |  |
| 35     | 675                         | 694               | 105               |  |
| 40     | 686                         | 703               | 725               |  |
| 40     |                             |                   | 729,5             |  |
| 40,5   |                             |                   | 731,5             |  |
| 41     |                             |                   | 731,5             |  |
| 42     |                             |                   | 714               |  |
| 44     |                             | 700               |                   |  |
| 45     | 686,5                       | 704               | 736,5             |  |
| 45     | 690                         |                   |                   |  |
| 50     | 700                         |                   | 747               |  |
| 50     |                             |                   | 750               |  |
| 50     |                             |                   | 745               |  |
| 54     |                             | 731               | 747               |  |
| 55     | 710                         | 725,5             | 754               |  |
| 55     | 710                         |                   |                   |  |
| 60     | 717                         | 741               |                   |  |

| 65 | 730 | 765 |
|----|-----|-----|
|----|-----|-----|

Variation du potentiel du couple Pu<sup>4+</sup>/Pu<sup>3+</sup> mesuré par rapport à Ag/AgCl en fonction de T



Pour chaque force ionique on détermine, par régression linéaire,  $(\frac{\partial E_{1/2}}{\partial T})(T,I)_p = \frac{\Delta S}{F}(T,I)_p$ pour le couple Pu<sup>4+</sup>/Pu<sup>3+</sup> (voir les commentaires des annexes 3 et 4)

|                                                         | $[ClO_4^{-}] = 1M$ | $[ClO_4^-] = 2M$ | $[ClO_4^-] = 3M$ |
|---------------------------------------------------------|--------------------|------------------|------------------|
| $\frac{\partial E_{1/2}}{\partial T})(T,I)_{p}$ (mV/°C) | 1,84 ± 0,10        | 1,86 ± 0,10      | 2,19 ± 0,10      |

#### Détermination du potentiel standard du couple Pu<sup>4+</sup> / Pu<sup>3+</sup> Théorie de l'Interaction Spécifique (S.I.T)

Dans le chapitre IV nous avons établi l'expression suivante :

$$\begin{split} Y_{1/2}(T,I) &= & Y_{1/2}(T,0) + (\epsilon(H^+,CI^-) - \epsilon(Na^+,CI^-))p_0 + (\delta(H^+,CI^-) - \delta(Na^+,CI^-)\Delta Tp_0 \\ &+ [\Delta\epsilon + \epsilon(Na^+,CI^-) + (\epsilon(H^+,CI^-) - \epsilon(Na^+,CI^-))q + (\Delta\delta + \delta(Na^+,CI^-) \\ &+ (\delta(H^+,CI^-) - \delta(Na^+,CI^-)q)\Delta T] \ m_{CIO_{\bar{4}}} \\ \text{soit} \\ Y_{1/2}(T,I) &= & Y'_{1/2}(T,0) + \epsilon'(T) \ m_{CIO_{\bar{4}}} \\ \text{où} \\ Y_{1/2}(T,I) &= & \frac{E_{1/2}(T,I)}{A(T)} + 8D(T,I) \\ Y_{1/2}(T,0) &= & \frac{E_{O/R}(T,0) - E_{Ag/AgCI}(T,0)}{A(T)} + 1g \ m_{CI^-} \\ p_0 &= 1,00113 \quad \text{et} \quad q = 0,04719 \qquad \epsilon(H^+,CI^-) = 0,12 \quad \text{et} \quad \epsilon(Na^+,CI^-) = 0,03 \\ D : \text{terme de Debye et Huckel (cf Annexe N°4 pour le calcul)} \end{split}$$

Les figures suivantes représentent les variations de  $Y_{1/2}(T,I)$  en fonction de  $m_{ClO_4}$  qui est égale à la force ionique de la solution. Chaque droite correspond à la régression linéaire sur une série de mesures réalisée à la température T. Les valeurs correspondantes de potentiels sont celles répertoriées en Annexe N°5. Voir les commentaires de l'Annexe 4.







Les résultats de ces différentes régressions linéaires donnent les résultats récapitulés dans le tableau suivant, où  $Y'_{1/2}$  (T,0) est l'ordonnée à l'origine et  $\varepsilon'(T)$  la pente de chacune des droites (les notation sont explicitées en début de cette annexe).

Pour calculer E  $_{O/R}(T,0)$  à partir de Y' $_{1/2}(T,0)$ , et  $[\Delta\epsilon + \epsilon](T)$  à partir de  $\epsilon'(T)$  nous effectuons certaines approximations qui consistent à négliger des termes du deuxième ordre (cf chapitre IV) de l'expression générale de Y $_{1/2}(T,I)$ . Ceci permet d'écrire les équations suivantes :

$$Y'_{1/2}(T,0) = \frac{E_{O/R}(T,0) - E_{Ag/AgCl}(T,0)}{A(T)} + \lg m_{Cl^{-}} + (\epsilon(H^+,Cl^{-}) - \epsilon(Na^+,Cl^{-}))p_0$$
  
$$\epsilon'(T) = [\Delta\epsilon + \epsilon(Na^+,Cl^{-}) + (\epsilon(H^+,Cl^{-}) - \epsilon(Na^+,Cl^{-}))q](T)$$

| Т    | Y' <sub>1/2</sub> (T,0) | $E_{Ag/AgCl}(T,0)$ | $E_{O/R}(T,0)$ | ε'(T)    | $[\Delta \varepsilon + \varepsilon](T)$ |
|------|-------------------------|--------------------|----------------|----------|-----------------------------------------|
|      |                         | )                  |                |          |                                         |
| (°C) |                         | (mV/ENH)           | (mV/ENH)       | (kg/mol) | (kg/mol)                                |
| 5    | 12,49                   | 234,4              | 1012           | 0,366    | 0,362                                   |
| 10   | 12,44                   | 231,7              | 1021           | 0,347    | 0,342                                   |
| 15   | 12,41                   | 228,9              | 1030           | 0,356    | 0,352                                   |
| 20   | 12,3                    | 225,8              | 1035           | 0,360    | 0,356                                   |
| 25   | 12,28                   | 222,6              | 1044           | 0,382    | 0,378                                   |
| 30   | 12,21                   | 219,1              | 1050           | 0,397    | 0,393                                   |
| 35   | 12,24                   | 215,5              | 1062           | 0,390    | 0,386                                   |
| 40   | 12,33                   | 211,7              | 1078           | 0,391    | 0,386                                   |
| 45   | 12,10                   | 207,6              | 1073           | 0,455    | 0,451                                   |
| 50   | 12,15                   | 203,4              | 1086           | 0,452    | 0,448                                   |
| 55   | 12,22                   | 198,9              | 1099           | 0,412    | 0,408                                   |
| 60   | 12,04                   | 194,2              | 1096           | 0,521    | 0,516                                   |
| 65   | 12,25                   | 189,3              | 1119           | 0,367    | 0,362                                   |

Les valeurs insrites en gras correspondent aux conditions standards.

Etude de l'influence de la température T sur les potentiels du couples  $UO_2^{2+}/UO_2^+$  et  $U^{4+}/U^{3+}$ Mesure par voltammétrie cyclique

Les potentiels sont mesurés dans une solution (HClO<sub>4</sub> 1M, NaCl 0,02m) par voltamétrie cyclique. Pour le couple UO<sub>2</sub><sup>2+</sup> / UO<sub>2</sub><sup>+</sup> l'enregistrement est effectué de -100mV à -450mV avec une vitesse de balayage de 60 mV/s. Pour le couple U<sup>4+</sup> / U<sup>3+</sup> l'enregistrement est effectué de -1100mV à -750mV avec une vitesse de balayage de 200 mV/s. Les potentiels sont mesurées par rapport à une électrode de référence Ag/AgCl qui plonge directement dans la solution de travail et dont le potentiel est égal à 328 mV/ENH (§ VIII.1).

| T<br>(°C) | $\frac{E_{1/2} (UO_2^{2+} / UO_2^{+})}{(mV/Ag-AgCl)}$ | E <sub>1/2</sub> (U <sup>4+</sup> / U <sup>3+</sup> )<br>(mV/Ag-AgCl) |
|-----------|-------------------------------------------------------|-----------------------------------------------------------------------|
| 5         | -268                                                  | -990                                                                  |
| 15        | -269                                                  | -974                                                                  |
| 25        | -268                                                  | -960                                                                  |
| 35        | -268                                                  | -944                                                                  |
| 45        | -267                                                  | -928                                                                  |
| 55        | -266                                                  | -912                                                                  |

Variation du potentiel du couple U<sup>4+</sup>/U<sup>3+</sup> en fonction de la température (I=1M)



Etude de l'influence de la force ionique I et de la température T sur le potentiel du couple  $UO_2(CO_3)_3^{4-} / UO_2(CO_3)_3^{5-}$ Mesure par voltammétrie cyclique

Les potentiels sont mesurés par voltamétrie cyclique en milieu carbonate de sodium où la force ionique est fixée par ajout de perchlorate de sodium ( $[CO_3^{2^-}] = 0,2 \text{ M} [CIO_4^{-}]_s = x \text{ M}$ ). L'électrode de référence Ag/AgCl plonge dans une solution de perchlorate de sodium, de force ionique proche de celle de travail, où l'on fixe la concentration d'ions chlorures afin d'imposer le potentiel de l'électrode ( $[CIO_4^{-}]_r$ ,  $[CI^{-}]=0,02m$ ). Les compositions de solutions sont données dans le tableau suivant :

|                     |                 | a                     |
|---------------------|-----------------|-----------------------|
| Electrolyte support |                 | Solution de référence |
| 5                   | 11              |                       |
| т                   |                 |                       |
| 1                   | $ ClO_{4} _{a}$ | $ ClO_4^- _{\pi}$     |
|                     | 4 4 5           | 4 1                   |
| $(\mathbf{M})$      | $(\mathbf{M})$  | (M)                   |
| (141)               | (141)           | (101)                 |
|                     |                 |                       |
| 0.6                 | 0               | 0.58                  |
| 1.0                 | 0.0             | 0,00                  |
| 1,2                 | 0,6             | 0,98                  |
| 2.0                 | 1 /             | 1.09                  |
| 2,0                 | 1,4             | 1,98                  |
| 32                  | 26              | 2 98                  |
| 5,2                 | 2,0             | 2,90                  |

L'enregistrement est réalisé entre -300 et -1500 mV/Ag-AgCl avec une vitesse de balayage fixée à 300 mV/s.  $E_{1/2}(T,I)$ : Potentiel de 1/2 vague mesuré par voltamétrie cyclique à la température T et force ionique I. Ce potentiel est assimilé au potentiel normal apparent (Annexe 3).

|        | E <sub>1/2</sub> (T,I) ( mV/Ag-AgCl) |                       |                     |                     |  |  |
|--------|--------------------------------------|-----------------------|---------------------|---------------------|--|--|
| T (°C) | $[ClO_4^-]_s = 0$                    | $[C10_4^{-}]_s = 0,6$ | $[ClO_4^-]_s = 1,4$ | $[ClO_4^-]_s = 2,6$ |  |  |
| 5      | -971                                 | -919                  | -854                | -799                |  |  |
| 15     | -981                                 | -932                  | -868                | -820                |  |  |
| 25     | -992                                 | -944                  | -882                | -840                |  |  |
| 35     | -1003                                | -956                  | -895                | -861                |  |  |
| 45     | -1015                                | -966                  | -902                | -882                |  |  |
| 55     | -1027                                | -980                  | -921                | -902                |  |  |
|        |                                      |                       |                     |                     |  |  |





Pour chaque force ionique on détermine, par régression linéaire,  $(\frac{\partial E_{1/2}}{\partial T})(T,I)_p = \frac{\Delta S}{F}(T,I)_p$  pour le couple UO<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub><sup>4-</sup> / UO<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub><sup>5-</sup>, voir les commentaires des Annexes 3 et 4.

| [ClO <sub>4</sub> ] <sub>s</sub>                        | 0 M             | 0,6 M       | 1,4 M           | 2,6 M       |
|---------------------------------------------------------|-----------------|-------------|-----------------|-------------|
| $\frac{\partial E_{1/2}}{\partial T})(T,I)_{p}$ (mV/°C) | $-1,12 \pm 0,3$ | -1,20 ± 0,3 | $-1,30 \pm 0,3$ | -2,06 ± 0,3 |

### Détermination du potentiel standard du couple $UO_2(CO_3)_3^{4-} / UO_2(CO_3)_3^{5-}$ Théorie de l'Interaction Spécifique (S.I.T)

Les notations employées dans cette annexe et les calculs réalisés pour extrapoler à force ionique nulle sont identiques à ceux de l'annexe N° 11 concernant le plutonium. Les compositions des solutions sont celles de l'annexe N°8.

Les extrapolations à force ionique nulle sont réalisées par régression linéaire sur les points [abscisse, ordonnée] =  $[m_s, Y'_{1/2}(T,I)]$  (cf annexe N° 11 et chapitre V pour le développemnt des formules).



Les résultats des différentes régressions linéaires donnent les résultats du tableau suivant :

T 
$$Y'_{1/2}(T,0) = E_{Ag/AgCl}(T,0) = E_{O/R}(T,0) = [\Delta \varepsilon + \varepsilon](T)$$

| (°C) |         | (mV/ENH) | (mV/ENH) | (kg/mol) |
|------|---------|----------|----------|----------|
| 5    | -19,469 | 234,4    | -748,7   | 1,128    |
| 15   | -19,031 | 228,9    | -762,1   | 1,032    |
| 25   | -18,629 | 222,6    | -778,9   | 0,953    |
| 35   | -18,263 | 215,5    | -797,6   | 0,826    |
| 45   | -17,969 | 207,6    | -819,5   | 0,902    |
| 55   | -17,641 | 198,9    | -839,6   | 0,791    |

Etude de l'influence de la force ionique I et de la température T sur le potentiel du couple  $PuO_2(CO_3)_3^{4-} / PuO_2(CO_3)_3^{5-}$ Mesure par voltammétrie cyclique

Les potentiels sont mesurés par voltammétrie cyclique en milieu carbonate de sodium  $([CO_3^{2-}] = x M + [Na^+] = 2x M$ , de force ionique I = 3x M). L'électrode de référence Ag/AgCl plonge dans une solution de perchlorate de sodium de force ionique proche de celle de la solution de travail. Les compositions de ces solutions sont répertoriées dans l'annexe N°11.

L'enregistrement est réalisé entre 300 et -300 mV/Ag-AgCl avec une vitesse de balayage fixée à 40 mV/s.  $E_{1/2}(T,I)$ : Potentiel de 1/2 vague mesuré par voltamétrie cyclique à la température T et force ionique I. Ce potentiel est assimilé au potentiel normal apparent (Annexe 3). Voir les commentaires de l'Annexe 4.

|        | $E_{1/2}(T,I) (mV/Ag-AgCl)$ |          |        |          |  |
|--------|-----------------------------|----------|--------|----------|--|
| T (°C) | I = 0,9M                    | I = 1,5M | I = 3M | I = 4,5M |  |
| 4      |                             |          | 22,5   |          |  |
| 5      |                             |          |        | 54,5     |  |
| 9      | -12                         |          |        |          |  |
| 10     |                             |          | 20,5   | 49,5     |  |
| 10     |                             |          |        | 50       |  |
| 15     |                             | -9       | 16     | 44       |  |
| 15     |                             |          |        | 45       |  |
| 16     | -15                         |          |        |          |  |
| 20     | -20,5                       | -12      | 11     | 38,5     |  |
| 20     |                             |          |        | 40       |  |
| 21     | -22,5                       |          |        |          |  |
| 25     | -36                         | -14,5    | 9      | 34,5     |  |
| 25     | -26                         | -20      | 5,5    | 28,5     |  |
| 25     |                             | -17,5    | 6,5    | 35       |  |
| 25     |                             |          | 5      |          |  |
| 30     | -32                         | -24,5    |        | 28       |  |
| 31     | -32                         |          |        |          |  |
| 34     |                             |          | -1     |          |  |
| 35     | -36                         | -32      | -2,5   | 17       |  |
| 35     | -44                         | -23,5    |        | 22       |  |
| 40     | -42,5                       | -38      | -10    | 17       |  |
| 40     | -41                         |          |        |          |  |
| 43     |                             |          | -10,5  |          |  |
| 45     | -47                         | -45      | -16    | 5        |  |
| 45     | -46,5                       | -45,5    |        | 12       |  |
| 50     | -54                         |          | -22    | 6        |  |
| 50     | -52                         |          | -20    | 14       |  |

| suite  | $E_{1/2}(T,I)$ (mV/Ag-AgCl) |          |        |          |  |
|--------|-----------------------------|----------|--------|----------|--|
| T (°C) | I = 0.9M                    | I = 1,5M | I = 3M | I = 4,5M |  |
| 52     |                             |          | -22    |          |  |
| 55     | -61,5                       | -57      | -28    | -5       |  |
| 55     |                             |          |        | 7        |  |
| 55     |                             |          |        | 2,5      |  |
| 60     |                             | -62      | -36,5  | -3,5     |  |
| 60     |                             |          |        | -0,5     |  |
| 60     |                             |          |        | -11      |  |
| 64     |                             |          | -36    |          |  |
| 65     | -69                         |          |        | -9,5     |  |

Variation du potentiel du couple  $PuO_2(CO_3)_3^{4-} / PuO_2(CO_3)_3^{5-}$ fonction de T



Pour chaque force ionique on détermine, par régression linéaire,  $(\frac{\partial E_{1/2}}{\partial T})(T,I)_p = \frac{\Delta S}{F}(T,I)_p$  pour le couple PuO<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub><sup>4-</sup> / PuO<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub><sup>5-</sup>.

|                                                                                                 | I = 0,9 M   | I = 1,5 M   | I = 3 M         | I = 4,5 M   |
|-------------------------------------------------------------------------------------------------|-------------|-------------|-----------------|-------------|
| $ \begin{array}{c} (\frac{\partial E_{1/2}}{\partial T})(T,I)_p \\ (mV/^{\circ}C) \end{array} $ | -1,04 ± 0,3 | -1,26 ± 0,3 | $-1,00 \pm 0,3$ | -1,07 ± 0,3 |

Détermination du potentiel standard du couple  $PuO_2(CO_3)_3^{4-} / PuO_2(CO_3)_3^{5-}$ Théorie de l'Interaction Spécifique (S.I.T)

Dans le chapitre V nous avons établi les expressions suivantes :

$$\begin{array}{ll} \displaystyle \frac{E_{1/2}(T,I)}{A} & -9 \ D(T,I_s) + D(T,I_r) = & \displaystyle \frac{E_{O/R}(T,0) - E_{Ag/AgCl}(T,0)}{A(T)} + lg \ m_{Cl} + (\Delta\epsilon(T) + \epsilon(T) \ ) \ m_s + \epsilon(T) \ \Delta m \end{array}$$

soit

 $\begin{array}{lll} Y_{1/2}(T,I) &=& Y_{1/2}(T,0) + (\Delta\epsilon(T) + \epsilon(T)) \; m_s + \epsilon(T) \Delta m \\ Y'_{1/2}(T,I) &=& Y_{1/2}(T,I) - \epsilon(T) \Delta m \\ &=& Y_{1/2}(T,0) + (\Delta\epsilon(T) + \epsilon(T) \;) \; m_s \end{array}$ 

avec

Les extrapolations à force ionique nulle sont réalisées par régression linéaire sur les points [abscisse, ordonnée] =  $[m_s, Y'_{1/2}(T,I)]$  (cf les 2 figures suivantes).

Dans le tableau suivant sont récapitulées les compositions des différentes solutions utilisées. L'indice s correspond à la solution de travail tandis que l'indice r correspond à la solution dans laquelle plonge l'électrode de référence  $m_s$ ,  $m_r$  et  $\Delta m = m_r - m_s$  correspondent aux molalités de Na<sup>+</sup>.

| Na <sub>2</sub> CO <sub>3</sub> (mol/l) | m <sub>s</sub> (mol/kg) | I <sub>s</sub> (mol/kg) | $m_r = I_r (mol/kg)$ |
|-----------------------------------------|-------------------------|-------------------------|----------------------|
| 0,3                                     | 0,60                    | 0,90                    | 0,92                 |
| 0,5                                     | 1,00                    | 1,50                    | 1,61                 |
| 1                                       | 2,01                    | 3,02                    | 3,50                 |
| 1,5                                     | 3,04                    | 4,56                    | 5,70                 |



Les résultats des différentes régressions linéaires donnent les résultats répertoriés dans le tableau suivant.  $Y_{1/2}$  (T,0) correspond à l'ordonnée à l'origine et  $[\Delta \varepsilon + \varepsilon](T)$  à la pente de chaque régression linéaire effectuée à une température T.

| Т    | $Y_{1/2}(T,0)$ | $E_{Ag/AgCl}(T,0)$ | E <sub>O/R</sub> (T,0) | $[\Delta \varepsilon + \varepsilon](T)$ |
|------|----------------|--------------------|------------------------|-----------------------------------------|
| (°C) |                | (mV/ENH)           | (mV/ENH)               | (kg/mol)                                |
| 5    | -2,454         | 234,4              | 192,8                  | 0,499                                   |
| 10   | -1,994         | 231,7              | 215,2                  | 0,296                                   |
| 15   | -2,097         | 228,9              | 206,1                  | 0,291                                   |
| 20   | -2,149         | 225,8              | 199,7                  | 0,269                                   |
| 25   | -2,312         | 222,6              | 186,3                  | 0,277                                   |
| 30   | -2,319         | 219,1              | 181,9                  | 0,254                                   |
| 35   | -2,492         | 215,5              | 167,0                  | 0,239                                   |
| 40   | -2,613         | 211,7              | 154,9                  | 0,222                                   |
| 45   | -2,613         | 207,6              | 149,9                  | 0,222                                   |
| 50   | -2,672         | 203,4              | 141,0                  | 0,224                                   |
| 55   | -2,874         | 198,9              | 122,4                  | 0,261                                   |
| 60   | -2,915         | 194,2              | 113,8                  | 0,234                                   |
| 65   | -2,863         | 189,3              | 111,2                  | 0,184                                   |

#### Résultats de l'étude spectrophotométrique de l'équilibre entre les complexes penta et tétracarbonates de Pu(IV)

Nous étudions l'équilibre :  $Pu(CO_3)_5^{6-}$  ö  $Pu(CO_3)_4^{4-} + CO_3^{2-}$ 

Nous récapitulons dans les 7 tableaux suivants les résultats bruts des dosages spectrophotométriques. Chacun d'eux correspond à une expérience indépendante c'est à dire une concentration initiale en carbonate de sodium et en plutonium différentes. Dans les deux premières colonnes sont donnés les résultats directs de la mesure de pH et la valeur corrigée en fonction de l'étalonnage en concentration réalisé pour chaque force ionique. Les étalons utilisés sont les suivants :

$$\begin{split} C_{NaHCO_3} &= C_{Na_2CO_3} = 0,05 \text{ M} \text{ ; } C_{NaClO_4} = (I - 0,15) \text{ M} \quad \text{ étalon N°1} \\ [H^+] &= 0,01 \text{ M} \text{ ; } C_{NaClO_4} = (I - 0,01) \text{ M} \quad \text{ étalon N°2} \end{split}$$

 $C_0$  étant la concentration initiale en Na<sub>2</sub>CO<sub>3</sub> de la solution de travail, la force ionique I, correspondante est égale à  $3C_0$ . Chaque expérience consiste à acidifier par bullage de  $CO_2$  une solution de concentration en plutonium  $C_{Pu}$  et de concentration initiale en carbonate de sodium  $C_0$ .

#### **Expérience N°1**

 $C_0 = 1,5 \text{ M et } C_{Pu} = 1,35 \text{ mM}$ 

Etalon N°1 : pH (mesuré) = 9,39 et Etalon N°2 : pH (mesuré) = 0,75

| pH<br>mesuré | -lg[H+]<br>réel | 5 DO <sub>486nm</sub><br>Ech1 Cuve 5 cm | $\frac{A_{486nm}}{C_{Pu}}$ |
|--------------|-----------------|-----------------------------------------|----------------------------|
| 10,54        | 10,93           | 0,592                                   | 87,38                      |
| 10,27        | 10,68           | 0,607                                   | 89,59                      |
| 10,08        | 10,51           | 0,608                                   | 89,74                      |
| 9,84         | 10,29           | 0,61                                    | 90,04                      |
| 9,67         | 10,14           | 0,61                                    | 90,04                      |
| 9,38         | 9,87            | 0,608                                   | 89,74                      |

#### Expérience N°2

 $C_0 = 1 \text{ M et } C_{Pu} = 0.93 \text{ mM}$ 

Etalon N°1 : pH (mesuré) = 9,16 et Etalon N°2 : pH (mesuré) = 1,17

|        | I 、                  |                        | 1 、                |
|--------|----------------------|------------------------|--------------------|
| pН     | -lg[H <sup>+</sup> ] | 10 DO <sub>486nm</sub> | A <sub>486nm</sub> |
| mesuré | réel                 | Ech 0,5 Cuve 5 cm      | $C_{Pu}$           |
|        |                      |                        | 10                 |
| 10,61  | 11,01                | 0,78                   | 83,87              |
| 10,40  | 10,81                | 0,82                   | 88,17              |
| 10,18  | 10,6                 | 0,845                  | 90,86              |
| 9,91   | 10,35                | 0,85                   | 91,40              |
| 9,59   | 10,04                | 0,835                  | 89,78              |
| 9,38   | 9,84                 | 0,84                   | 90,32              |
| 8,99   | 9,47                 | 0,83                   | 89,25              |
| 8,82   | 9,31                 | 0,81                   | 87,10              |

| I u ·                                                       |                                                                                                                                                      |                                                        |  |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| Etalon N°1 : pH (mesuré) = 9,30 et Etalon N°2 : pH (mesuré) |                                                                                                                                                      |                                                        |  |  |
| -lg[H <sup>+</sup> ]                                        | 5 DO <sub>486nm</sub>                                                                                                                                | A <sub>486nm</sub>                                     |  |  |
| réel                                                        | Ech 1 Cuve 5 cm                                                                                                                                      | C <sub>Pu</sub>                                        |  |  |
| 10.00                                                       | 0.55                                                                                                                                                 | 00 <b>F</b> (                                          |  |  |
| 10,28                                                       | 0,57                                                                                                                                                 | 89,76                                                  |  |  |
| 10,09                                                       | 0,57                                                                                                                                                 | 89,76                                                  |  |  |
| 9,91                                                        | 0,57                                                                                                                                                 | 89,76                                                  |  |  |
| 9,71                                                        | 0,57                                                                                                                                                 | 89,76                                                  |  |  |
| 9,51                                                        | 0,563                                                                                                                                                | 88,66                                                  |  |  |
| 9,32                                                        | 0,56                                                                                                                                                 | 88,19                                                  |  |  |
| 9,16                                                        | 0,55                                                                                                                                                 | 86,61                                                  |  |  |
| 8,96                                                        | 0,49                                                                                                                                                 | 77,17                                                  |  |  |
| 8,75                                                        | 0,505                                                                                                                                                | 79,53                                                  |  |  |
| 8,54                                                        | 0,398                                                                                                                                                | 62,68                                                  |  |  |
| 8,33                                                        | 0,46                                                                                                                                                 | 72,44                                                  |  |  |
| 8,01                                                        | 0,387                                                                                                                                                | 60,94                                                  |  |  |
| 7,85                                                        | 0,353                                                                                                                                                | 55,59                                                  |  |  |
|                                                             | PH (mesuré<br>-lg[H <sup>+</sup> ]<br>réel<br>10,28<br>10,09<br>9,91<br>9,71<br>9,51<br>9,32<br>9,16<br>8,96<br>8,75<br>8,54<br>8,33<br>8,01<br>7,85 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |  |  |

# Expérience N°3 $C_0 = 0.7 \text{ M} \text{ et } C_{Pu} = 1.27 \text{ mM}$ = 1,30

**Expérience N°4**  $C_0 = 0.5 \text{ M et } C_{Pu} = 1.4 \text{ mM}$ 

### Etalon N°1 : pH (mesuré) = 9,3 et Etalon N°2 : pH (mesuré) = 1,43

| pH<br>mesuré | -lg[H <sup>+</sup> ] | 5 DO <sub>486nm</sub><br>Ech 1 Cuve 5 cm | $\frac{A_{486nm}}{C_{P}}$ |
|--------------|----------------------|------------------------------------------|---------------------------|
|              | ICCI                 | Len i Cuve 5 em                          | Opu                       |
| 10,4         | 10,53                | 0,57                                     | 86,41                     |
| 10,25        | 10,38                | 0,59                                     | 86,34                     |
| 9,98         | 10,13                | 0,63                                     | 86,14                     |
| 9,82         | 9,97                 | 0,62                                     | 85,93                     |
| 9,47         | 9,64                 | 0,63                                     | 85,19                     |
| 8,86         | 9,06                 | 0,61                                     | 81,55                     |
| 8,2          | 8,43                 | 0,51                                     | 69,18                     |
| 7,88         | 8,13                 | 0,40                                     | 58,78                     |
| 7,81         | 8,06                 | 0,47                                     | 56,05                     |
| 7,5          | 7,77                 | 0,36                                     | 44,56                     |
| 7,47         | 7,74                 | 0,36                                     | 43,42                     |
| 7,33         | 7,61                 | 0,31                                     | 38,72                     |
| 7,2          | 7,48                 | 0,27                                     | 34,51                     |
| 7,01         | 7,30                 | 0,24                                     | 29,65                     |
| 6,8          | 7,10                 | 0,21                                     | 25,56                     |
| 6,7          | 7,01                 | 0,16                                     | 24,12                     |

#### Expérience N°5 $C_0 = 0.3 \text{ M et } C_{Pu} = 0.88 \text{ mM}$ Etalon N°1 : pH (mesuré) = 9,78 et Etalon N°2 : pH (mesuré) = 1,85

| pH     | -lg[H <sup>+</sup> ] | 10 DO <sub>486nm</sub> | A <sub>486nm</sub> |
|--------|----------------------|------------------------|--------------------|
| mesuré | réel                 | Ech 0,5 Cuve 5 cm      | C <sub>Pu</sub>    |
| 10,19  | 9,86                 | 0,737                  | 83,75              |
| 9,85   | 9,54                 | 0,752                  | 85,45              |
| 9,65   | 9,35                 | 0,71                   | 80,68              |
| 9,45   | 9,16                 | 0,72                   | 81,82              |
| 9,25   | 8,97                 | 0,707                  | 80,34              |
| 8,96   | 8,7                  | 0,64                   | 72,73              |
| 8,62   | 8,38                 | 0,53                   | 60,23              |
| 8,32   | 8,09                 | 0,423                  | 48,07              |
| 8,15   | 7,93                 | 0,38                   | 43,18              |
| 8,05   | 7,84                 | 0,348                  | 39,55              |
| 7,9    | 7,7                  | 0,285                  | 32,39              |
| 7,8    | 7,6                  | 0,285                  | 32,39              |
| 7,71   | 7,52                 | 0,27                   | 30,68              |
| 7,54   | 7,36                 | 0,23                   | 26,14              |
| 7,27   | 7,1                  | 0,2                    | 22,73              |
| 7,54   | 7,36                 | 0,215                  | 24,43              |

#### Expérience N°6

 $C_0 = 0.3 \text{ M et } C_{Pu} = 0.165 \text{ mM}$ 

Etalon N°1 : pH (mesuré) = 9,78 et Etalon N°2 : pH (mesuré) = 1,85

| pH     | -lg[H <sup>+</sup> ] | 50 DO <sub>486nm</sub> | A <sub>486nm</sub> |
|--------|----------------------|------------------------|--------------------|
| mesure | réel                 | Ech 0,1 Cuve 5 cm      | C <sub>Pu</sub>    |
| 10,16  | 9,83                 | 0,69                   | 83,74              |
| 9,98   | 9,66                 | 0,71                   | 86,17              |
| 9,57   | 9,27                 | 0,685                  | 83,13              |
| 9,32   | 9,03                 | 0,65                   | 78,88              |
| 9,09   | 8,82                 | 0,608                  | 73,79              |
| 8,88   | 8,62                 | 0,54                   | 65,53              |
| 8,63   | 8,39                 | 0,44                   | 53,40              |
| 8,06   | 7,85                 | 0,295                  | 35,80              |
| 7,865  | 7,66                 | 0,248                  | 30,10              |
| 7,7    | 7,51                 | 0,218                  | 26,46              |
| 7,49   | 7,31                 | 0,21                   | 25,49              |
| 1      | 1                    | 1                      | 1                  |

Expérience N°7

 $C_0 = 0.1 \text{ M et } C_{Pu} = 0.27 \text{ mM}$ 

Etalon N°1 : pH (mesuré) = 9,72 et Etalon N°2 : pH (mesuré) = 1,65

| pН     | -lg[H <sup>+</sup> ] | 25 DO <sub>486nm</sub> | A <sub>486nm</sub> |
|--------|----------------------|------------------------|--------------------|
| mesure | reel                 | Ech 0,2 Cuve 5 cm      | $C_{Pu}$           |
| 10,11  | 9,95                 | 0,41                   | 60,74              |
| 9,94   | 9,79                 | 0,41                   | 60,74              |
| 9,64   | 9,51                 | 0,425                  | 62,96              |
| 8,68   | 8,61                 | 0,3                    | 44,44              |
| 8,68   | 8,61                 | 0,31                   | 45,93              |
| 8,45   | 8,39                 | 0,252                  | 37,33              |
| 7,85   | 7,83                 | 0,19                   | 28,15              |
| 7,44   | 7,44                 | 0,17                   | 25,19              |
| 7,22   | 7,23                 | 0,15                   | 22,22              |
| 6,99   | 7,02                 | 0,135                  | 20,00              |
| 6,8    | 6,84                 | 0,13                   | 19,26              |
| 1      | 1                    |                        |                    |

#### Détermination de la constante, k<sub>5</sub>, de l'équilibre entre les complexes penta et tétracarbonates de Pu(IV) Résultat de l'ajustement multiparamétrique

Nous présentons dans les tableaux suivants les résultats numériques obtenus lors de l'ajustement par différents programmes informatiques de la constante de l'équilibre et éventuellement d'autres paramètres. Les résultats expérimentaux sont récapitulés dans

l'annexe N°12, l'équation mathématique permettant de modéliser la courbe  $\frac{A_{486nm}}{C_{Pu}}$ 

=  $f(lg[CO_3^{2^-}])$  est décrite au chapitre VI. On notera dans la suite :

 $A_{1},(A_{2})$ : Absorbance molaire de l'espèce  $Pu(CO_{3})_{5}^{6-}$  ( $Pu(CO_{3})_{4}^{4-}$ ) à 486 nm  $k_{5}, (k_{5}^{0})$ : Constante ( à force ionique nulle) de l'équilibre  $Pu(CO_{3})_{5}^{6-}$  ö  $Pu(CO_{3})_{4}^{4-}$  $+ CO_{3}^{2-}$ 

*Remarque : Dans les tableaux suivants les valeurs en gras sont issues de l'ajustement, les autres sont constantes lors du calcul, on indique le temps de calcul.* 

1 - Les résultats ci-dessous (Tableaux 1, 2 et 3) sont issus du traitement indépendant de chacune des expériences. Le nombre de points (il s'agit du nombre de dosages réalisé à différentes valeurs de pour une même solution de travail) pris en compte dans ce type d'ajustement est faible ce qui restreint le nombre de paramètres qu'il est possible d'ajuster avec une précision convenable. Etant donné que la variation de force ionique intrinsèque à chaque expérience est limitée nous avons choisi dans ce calcul de ne pas ajuster le coefficient d'interaction spécifique.

Les cinq premières lignes des 3 tableaux suivants concernent les résultats d'ajustements où les absorbances molaires sont introduites comme étant des constantes et non pas des paramètres ajustables et prises égales à des valeurs déterminées expérimentalement sur des solutions d'espèces pures. Par contre, les cinq dernières lignes correspondent aux résultats de calcul où 3 paramètres sont ajustés simultanément : il s'agit de lgk<sub>5</sub>, A<sub>1</sub> et A<sub>2</sub>.

| C <sub>0</sub> | N <sup>bre</sup> de | lgk5 | A <sub>1</sub> | A <sub>2</sub> | Temps |
|----------------|---------------------|------|----------------|----------------|-------|
| (mol/l)        | points              |      | (l/mol cm)     | (l/mol cm)     | (s)   |
| 0.1            | 11                  | 1 72 | 72.1           | 10 /           | 0.7   |
| 0,1            | 11                  | 1,72 | 72,1           | 17,4           | 0,7   |
| 0,3            | 16                  | 1,50 | 94,6           | 15,9           | 1,1   |
| 0,3            | 11                  | 1,30 | 100,8          | 17,7           | 0,7   |
| 0,5            | 16                  | 1,68 | 90,3           | 15,0           | 1     |
| 0,7            | 13                  | 0,77 | 102,0          | 50             | 1,3   |
|                |                     |      |                |                |       |
| 0,1            | 11                  | 1,43 | 91             | 17             | 0,2   |
| 0,3            | 16                  | 1,54 | 91             | 17             | 0,2   |
| 0,3            | 11                  | 1,47 | 91             | 17             | 0,2   |
| 0,5            | 16                  | 1,64 | 91             | 17             | 0,2   |
| 0,7            | 13                  | 1,51 | 91             | 17             | 0,2   |

Ajustement par simplex (Tableau N°1)

| C <sub>0</sub> | N <sup>bre</sup> de | lgk <sub>5</sub>  | A <sub>1</sub>  | A <sub>2</sub> | Temps |
|----------------|---------------------|-------------------|-----------------|----------------|-------|
| (mol/l)        | points              |                   | (l/mol cm)      | (l/mol cm)     | (s)   |
| 0,1            | 11                  | $1,724 \pm 0,075$ | 72,1 ± 3,2      | 19,4 ± 0,8     | 7     |
| 0,3            | 16                  | 1,501 ± 0,036     | 94,6 ± 1,8      | 15,9 ± 1,2     | 14    |
| 0,3            | 11                  | 1,303 ± 0,090     | $100,8 \pm 4,5$ | 17,7 ± 2,1     | 7     |
| 0,5            | 16                  | $1,68 \pm 0,10$   | 90,3 ± 2,1      | 15,0 ± 4,6     | 15    |
| 0,7            | 13                  | $0,77 \pm 0,49$   | 102,0 ± 8,1     | 49,9 ± 9,3     | 10    |
|                |                     |                   |                 |                |       |
| 0,1            | 11                  | $1,432 \pm 0,068$ | 91              | 17             | 2     |
| 0,3            | 16                  | 1,536 ± 0,016     | 91              | 17             | 4     |
| 0,3            | 11                  | $1,469 \pm 0,034$ | 91              | 17             | 2     |
| 0,5            | 16                  | $1,645 \pm 0,030$ | 91              | 17             | 4     |
| 0,7            | 13                  | 1,512 ± 0,069     | 91              | 17             | 3     |

Ajustement par jacknife (Tableau N°2)

| Ajustement | par | bootstrap | (] | Fableau | N°3) |
|------------|-----|-----------|----|---------|------|
|------------|-----|-----------|----|---------|------|

| C <sub>0</sub> | N <sup>bre</sup> de | lgk <sub>5</sub>  | A <sub>1</sub> | A <sub>2</sub> | Temps |
|----------------|---------------------|-------------------|----------------|----------------|-------|
| (mol/l)        | points              |                   | (l/mol cm)     | (l/mol cm)     | (s)   |
| 0.1            | 11                  | 1 724 + 0 004     | 731.59         | 10.4 + 0.9     | (50   |
| 0,1            | 11                  | $1,724 \pm 0,094$ | 72,1 ± 5,8     | $19,4 \pm 0,8$ | 059   |
| 0,3            | 16                  | $1,500 \pm 0,035$ | 94,6 ± 1,7     | 15,9 ± 1,1     | 947   |
| 0,3            | 11                  | $1,303 \pm 0,100$ | 100,8 ± 4,4    | 17,7 ± 22,3    | 707   |
| 0,5            | 16                  | 1,685 ± 0,096     | 90,3 ± 2,0     | 15,0 ± 4,4     | 978   |
| 0,7            | 13                  | $0,769 \pm 0,316$ | $102 \pm 8,8$  | 49,9 ± 37,8    | 993   |
|                |                     |                   |                |                |       |
| 0,1            | 11                  | $1,432 \pm 0,060$ | 91             | 17             | 161   |
| 0,3            | 16                  | $1,536 \pm 0,017$ | 91             | 17             | 234   |
| 0,3            | 11                  | $1,47 \pm 0,03$   | 91             | 17             | 162   |
| 0,5            | 16                  | $1,645 \pm 0,030$ | 91             | 17             | 227   |
| 0,7            | 13                  | $1,512 \pm 0,067$ | 91             | 17             | 182   |
|                | 1                   |                   | 1              |                |       |

2 - Les résultats ci-dessous (Tableaux 4, 5 et 6) sont issus du traitement indépendant de chacune des expériences. Cependant, pour tenir compte de la variation de force ionique intrinsèque à chaque expérience, nous avons ajusté la constante  $k_5^0$  à force ionique nulle en considérant comme coefficient d'interaction spécifique la valeur  $\Delta \epsilon = 0,787$  qui a été ajustée au préalable. Les absorbances molaires sont fixées numériquement.

| <b>.</b> • • • | • •         |                                    |   |
|----------------|-------------|------------------------------------|---|
| Austomont      | nor cimplev | ("L'ahloan N°/L)                   |   |
| Alusiement     | vai simuta  | ( <b>1</b> a) <b>1 0 1 1 1 1 1</b> | 1 |
| -              |             | · · · ·                            |   |

| 0              | 1 1                 |             | /     |
|----------------|---------------------|-------------|-------|
| C <sub>0</sub> | N <sup>bre</sup> de | $\lg k_5^0$ | Temps |
| (mol/l)        | points              | - 5         | (s)   |
|                |                     |             |       |
| 1,5            | 6                   | -0,522      | 3     |
| 1              | 8                   | -0.966      | 4     |
|                | _                   |             | -     |

| 0,7 | 13 | -1,296 | 6 |
|-----|----|--------|---|
| 0,5 | 16 | -1,114 | 6 |
| 0,3 | 16 | -1,085 | 7 |
| 0,3 | 11 | -1,117 | 5 |
| 0,1 | 11 | -0,748 | 3 |

| C <sub>0</sub><br>(mol/l) | N <sup>bre</sup> de points | $\lg k_5^0$        | Temps<br>(s) |
|---------------------------|----------------------------|--------------------|--------------|
| 1,5                       | 6                          | $-0,522 \pm 0,066$ | 11           |
| 1                         | 8                          | -0,966 ± 0,117     | 17           |
| 0,7                       | 13                         | $-1,295 \pm 0,070$ | 43           |
| 0,5                       | 16                         | $-1,114 \pm 0,036$ | 55           |
| 0,3                       | 16                         | $-1,085 \pm 0,010$ | 63           |
| 0,3                       | 11                         | $-1,177 \pm 0,026$ | 30           |
| 0,1                       | 11                         | -0,748 ± 0,131     | 21           |

Ajustement par jacknife (Tableau N°5)

### Ajustement par bootstrap (Tableau N°6)

| $C_0$     | N <sup>bre</sup> de | $\lg k_5^0$        | Temps<br>(s) |
|-----------|---------------------|--------------------|--------------|
| (11101/1) | points              |                    | (5)          |
| 1,5       | 6                   | $-0,522 \pm 0,057$ | 1822         |
| 1         | 8                   | -0,966 ± 0,115     | 2084         |
| 0,7       | 13                  | $-1,295 \pm 0,067$ |              |
| 0,5       | 16                  | $-1,114 \pm 0,032$ | 2668         |
| 0,3       | 16                  | $-1,085 \pm 0,014$ | 3720         |
| 0,3       | 11                  | $-1,177 \pm 0,024$ | 2550         |
| 0,1       | 11                  | $-0,748 \pm 0,104$ | 1969         |
|           | 1                   |                    | 1            |

**3** - Les résultats présentés ci-dessous (Tableaux 7, 8 et 9) sont issus du traitement global de toutes les expériences, ce qui représente un ensemble de 81 points expérimentaux. Nous avons ajusté 1, 2 ou 4 paramètres.

#### Ajustement par simplex (Tableau N°7)

| $\lg k_5^0$ | Δε       | A <sub>1</sub> | A <sub>2</sub> | Temps |
|-------------|----------|----------------|----------------|-------|
|             | (kg/mol) | (l/mol cm)     | (l/mol cm)     | (s)   |
| -1,082      | 0,787    | 91             | 17             | 30    |
| -1,082      | 0,787    | 91             | 17             | 54    |
| -0,859      | 2,04     | 64             | 28             | 4     |

#### Ajustement par jacknife (Tableau N°8)

| $\lg k_5^0$        | Δε                | A <sub>1</sub> | A <sub>2</sub> | Temps |
|--------------------|-------------------|----------------|----------------|-------|
|                    | (kg/mol)          | (l/mol cm)     | (l/mol cm)     | (s)   |
| $-1,082 \pm 0,026$ | 0,787             | 91             | 17             | 1164  |
| $-1,081 \pm 0,051$ | $0,787 \pm 0,043$ | 91             | 17             | 2357  |
| -1,613 ± 0,165     | $0,7 \pm 0,043$   | 95,8 ± 1,9     | 36,8 ± 5,5     | 6115  |

#### Ajustement par bootstrap (Tableau N°9)

| $\lg k_5^0$ | Δε | A <sub>1</sub> | A <sub>2</sub> | Temps |
|-------------|----|----------------|----------------|-------|
|-------------|----|----------------|----------------|-------|

|                    | (kg/mol)          | (l/mol cm) | (l/mol cm) | (h)  |
|--------------------|-------------------|------------|------------|------|
| $-1,082 \pm 0,026$ | 0,787             | 91         | 17         | 4    |
| $-1,081 \pm 0,053$ | $0,787 \pm 0,048$ | 91         | 17         | 6,5  |
| -1,613 ± 0,163     | 0,7 ± 0,045       | 95,8 ± 2,0 | 36,8 ± 5,3 | 26,5 |

Chacune des 5 figures suivantes représente les points expérimentaux (lgC,  $\frac{A_{486nm}}{C_{Pu}}$ ) d'une expérience à concentration en sodium (2C<sub>0</sub>) donnée, comparés à la courbe calculée issue de l'ajustement de lgk<sub>5</sub> par le bootstrap (Tableau N°3 ci-dessus). Les points expérimentaux sont ceux de l'annexe N°12. A partir des mesures de pH nous avons calculé la concentration en carbonate de sodium correspondante C, selon la formule (chapitre VI):

$$C = \frac{2C_0 + [H^+] - \frac{K_e}{[H^+]}}{2 + K_1[H^+]}$$

K<sub>e</sub>: produit ionique de l'eau

10

-4

 $K_1$ : constante de l'équilibre H<sup>+</sup> + CO<sub>3</sub><sup>2</sup>-ö HCO<sub>3</sub><sup>-</sup>

L'expression permettant de tracer la courbe calculée est la suivante (chapitre VI) :

$$\frac{A_{486nm}}{C_{Pu}} = \frac{A_1 k_5 C + A_2}{k_5 C + 1}$$

Dans cet ajustement on ne tient pas compte de la variation de la force ionique due au passage progressif d'un milieu carbonate à un milieu bicarbonate et les absorbances molaires ne sont pas ajustées.



-2

lg[∞2°]

0





**Pages suivantes** : listing des fonctions calculant l'absorbance molaire et appelées par les programme (en TURBO PASCAL 5) d'ajustement, SIMPLEX, JACKNIFE et BOOTSTRAP.

-----listing

-----listing

## Mesure du potentiel du couple $PuO_2(CO_3)_3^{4-} / Pu(CO_3)_5^{6-}$

Nous donnons ici les résultats d'une étude non publiée, faite au laboratoire par Christine Poulangy à l'occasion d'un stage dont le sujet a été défini par le professeur Ingmar Grenthe.

Toutes les solutions sont en milieu NaClO4 3M. Ajouts d'une solution de Pu(VI) dans une solution de Pu(IV). Les potentiels sont mesurés par rapport à une électrode Ag-AgCl plongée dans une solution de NaCl 0,02 M et de même force ionique de la solution de plutonium. La solution de mesure est constamment maintenue sous bullage d'un mélange ( $CO_2 + N_2$ ).

| Composition des     | Pu(VI) | Pu(IV) | HCO3   |
|---------------------|--------|--------|--------|
| solutions initiales | (mM)   | (mM)   | (mM)   |
| solution de Pu(VI)  | 13,69  | 0,00   | 122,62 |
| solution de Pu(IV)  | 0,00   | 0,92   | 122,62 |
| Volume initial (ml) | 30,00  |        |        |

| lg(VI/IV)                   | E10   | E30   | E100           | -lg[H <sup>+</sup> ] | Pu VI  | t10  | t30  | t100  |
|-----------------------------|-------|-------|----------------|----------------------|--------|------|------|-------|
|                             | (mV)  | (mV)  | (mV)           | (mV)                 | (ml)   | (h)  | (h)  | (h)   |
|                             | 120,5 |       |                | 7,81                 | 0      |      |      |       |
| -0,32                       | 188,6 |       |                |                      | 1      |      |      |       |
| -0,03                       | 210,0 | 259,0 |                |                      | 2      | 1,0  | 17,0 |       |
| 0,14                        | 231,1 | 160,0 |                | 7,86                 | 3      | 2,0  | 2,0  |       |
| 0,24                        | 223,7 | 264,5 |                | 7,38                 | 4      | 1,5  | 64,0 |       |
| 0,33                        | 235,9 | 266,5 |                | 7,40                 | 5      | 2,0  | 4,5  |       |
| 0,40                        | 236,5 | 267,1 |                | 7,86                 | 6      | 16,0 | 4,5  |       |
| 0,45                        | 237,0 |       |                | 7,87                 | 7      | 20,0 |      |       |
| 0,54                        | 299,4 |       |                |                      | 9      | 17,0 |      |       |
| nouvelle solution de Pu(VI) |       | 10,35 | en Pu(VI) (mM) |                      |        |      |      |       |
|                             |       |       | 187,0          | 7,04                 | 0      |      |      |       |
| -1,02                       |       |       | 249,9          | 6,97                 | 1      |      |      | 18,0  |
| -0,73                       |       |       | 258,1          | 6,99                 | 2      |      |      | 2,0   |
| -0,57                       |       |       | 262,1          | 7,06                 | 3      |      |      | 2,5   |
| -0,46                       |       |       | 265,7          | 7,11                 | 4      |      |      | 2,5   |
| -0,31                       |       |       | 287,1          | 7,00                 | 6      |      |      | 17,5  |
| -0,21                       |       |       | 290,5          | 7,00                 | 8      |      |      | 3,5   |
| -0,17                       |       |       | 286,5          | 6,97                 | 9      |      |      | 192,0 |
| nouvelle solution de Pu(VI) |       |       | 8,23           | en Pu(VI             | ) (mM) |      |      |       |
| -0,14                       |       |       | 287,0          |                      | 10     |      |      | 42,0  |
| -1,00                       |       |       | 287,4          |                      | 12     |      |      | 46,5  |
| -0,60                       |       |       | 282,5          |                      | 14     |      |      | 120,0 |

t10 (t30, t100) = temps au bout duquel est mesuré le potentiel E10 (E30, E100) sous bullage d'un mélange de  $CO_2$  10 (30, 100) % dans  $N_2$ .

page

**Annexe N°1**: Remutation de  $Pu^{4+}$  à partir de  $PuO_2^{2+}$  et  $Pu^{3+}$ . Résultats des dosages spectrophotométriques 141

**Annexe N°2**: Dismutation de  $PuO_2^+$ . Résultats des dosages spectrophotométriques 144

**Annexe N°3**: Etude de l'influence de la force ionique et de la température sur le potentiel du couple  $PuO_2^{2+} / PuO_2^{+}$  156

**Annexe N°4**: Détermination du potentiel standard du couple  $PuO_2^{2+} / PuO_2^{+}$  159 **Annexe N°5**: Etude de l'influence de la force ionique et de la température sur le potentiel du couple  $Pu^{4+} / Pu^{3+}$  162

Annexe N°6 : Détermination du potentiel standard du couple  $Pu^{4+} / Pu^{3+}$  164 Annexe N°7 : Etude de l'influence de la température sur les potentiels des couples  $UO_2^{2+} / UO_2^{+}$  et  $U^{4+} / U^{3+}$  168

Annexe N°8 : Etude de l'influence de la force ionique et de la température sur le couple  $UO_2(CO_3)_3^{4-} / UO_2(CO_3)_3^{5-}$  169

Annexe N°9 :Détermination du potentiel standard du couple  $UO_2(CO_3)_3^{4-7}$  $UO_2(CO_3)_3^{5-}$ 171

**Annexe N°10**: Etude de l'influence de la force ionique et de la température sur le couple  $PuO_2(CO_3)_3^{4-} / PuO_2(CO_3)_3^{5-}$  173

Annexe N°11 :Détermination du potentiel standard du couple  $PuO_2(CO_3)_3^{4-}$  $PuO_2(CO_3)_3^{5-}$ 175

Annexe N°12 : Résultats de l'étude spectrophotométrique de l'équilibre entre les complexes

penta et tétracarbonates de Pu(IV) 177

Annexe N°13 : Détermination de la constante de l'équilibre entre les complexes penta et

teracarbonates de Pu(IV). Résultat de l'ajustement multiparamétrique 180 Annexe N°14 : Mesure du potentiel du couple  $PuO_2(CO_3)_3^{4-} / Pu(CO_3)_5^{6-}$  188

### Liste des tableaux

page

| Tableau II.1                            | Potentiels rédox de Pu à force ionique 1M[53 RAB], [89 RIG] 15                                                  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Tableau II.2                            | Constantes d'Hydrolyse [91 VIT] 15                                                                              |
| Tableau II.3                            | Produits de solubilité [91 VIT] 15                                                                              |
| Tableau III.1                           | Résultats de mesures de Kasha [49 KAS] 22                                                                       |
| Tableau III.2     des potentiels irré   | Synthèse des résultats bibliographiques concernant la détermination versibles du plutonium 26                   |
| Tableau III.3                           | Absorbances molaires 35                                                                                         |
| Tableau III.4                           | Résultats expérimentaux obtenus pour $\lg K_V(I)$ 45                                                            |
| <b>Tableau III.5</b><br>46              | Extrapolation à force ionique nulle à partir des résultats du Tableau 4                                         |
| Tableau III.6           20°C         48 | Potentiels des couples réversibles du plutonium en milieu acide à                                               |
| Tableau III.7                           | Potentiels des couples irréversibles du plutonium 49                                                            |
| Tableau III.8et relevées dans la        | Comparaison entre les valeurs $K_{IV}$ et $K_V$ déterminées dans ce travail a littérature 50                    |
| Tableau IV.1                            | Résultats de l'étude des couples $Pu^{4+}/Pu^{3+}$ et $PuO_2^{2+}/PuO_2^{+}$ 77                                 |
| Tableau IV.2littérature et mesu         | Comparaison des potentiels du couple Pu <sup>4+</sup> /Pu <sup>3+</sup> relevés dans la urés dans ce travail 79 |
| <b>Tableau IV.2 bis</b><br>79           | Potentiels formels du couple Pu <sup>4+</sup> /Pu <sup>3+</sup> de [89 RIG] et [ce travail]                     |
| <b>Tableau IV.3</b><br>80               | Coefficients d'interaction spécifique $\Delta\epsilon$ pour les couples An^{4+}/An^{3+}                         |
| Tableau IV.4                            | Comparaison des potentiels formels (I=1M,T=25°C) et standard du                                                 |
| couple $PuO_2^{2+}/Pu$                  | $O_2^+$ relevés dans la littérature et mesurés dans ce travail 81                                               |
| Tableau IV.4 bis                        | Potentiels formels du couple $PuO_2^{2+}/PuO_2^{+}$ de [89 RIG] et [ce travail]                                 |
| Tableau IV.5                            | Coefficients d'interaction spécifique As pour les couples AnO.                                                  |
| $^{2+}/\text{AnO}_{2}^{+}$ 82           | controlons à meraction speerinque de pour les couples (mog                                                      |
| Tableau IV.6<br>Tableau IV.6.bis        | Influence de la température sur les potentiels rédox 83<br>Entropies (J/(mol K)) des réactions rédox 83         |
| Tableau V.1                             | Résultats expérimentaux concernant $UO_2(CO_3)_2^{4} / UO_2(CO_3)_2^{5}$                                        |
| 96                                      | 1 2 5 5 2 5 5                                                                                                   |
| Tableau V.2                             | Eude du couple $UO_2(CO_3)_3^{4-} / UO_2(CO_3)_3^{5-}$ [89 RIG a] 96                                            |
| <b>Tableau V.3</b><br>103               | Résultats expérimentaux concernant $PuO_2(CO_3)_3^{4-} / PuO_2(CO_3)_3^{5-}$                                    |
| Tableau V.4<br>mesurés en milieu        | Constantes de complexation et potentiels rédox des actinides,<br>a carbonate concentré 106                      |
| <b>Tableau V.5</b><br>106               | Constantes de complexation et potentiels rédox standard d'actinides                                             |
| Tableau VI.1                            | Conditions opératoires pour l'étude de l'équilibre                                                              |
| Pu(Co                                   | $O_{3})_{5}^{6-}$ ö Pu(CO <sub>3</sub> ) <sub>4</sub> <sup>4-</sup> + CO <sub>3</sub> <sup>2-</sup> 112         |
|                                         |                                                                                                                 |

### Liste des Figures

page

| Figure II.1 :<br>Figure II.2 :<br>en présence                           | Diagramme de prédominance des espèces du plutonium 17<br>Diagramme de prédominance des espèces solubles du plutonium<br>des espèces solides $Pu(OH)_4$ , $Pu(OH)_3$ et $PuO_2(OH)_2$ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Figure II.3 :<br>en présence                                            | Diagramme de prédominance des espèces solubles du plutonium des espèces solides $Pu(OH)_4$ et $Pu(OH)_3$ 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Figure III.1 :                                                          | Spectre d'absorption de $PuO_2^{2+}$ 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Figure III.1 b :                                                        | Spectre d'absorption de $PuO_2(CO_3)_3^{4-}$ 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Figure III.2 :                                                          | Spectre d'absorption de $PuO_2^+$ 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Figure III.3 :<br>Figure III.4 :<br>Figure III.5 :<br>spectrophotométri | Spectre d'absorption de Pu <sup>4+</sup> 37<br>Spectre d'absorption de Pu <sup>3+</sup> 38<br>Mise en évidence de l'interférence pour le dosage<br>ique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| d'un mélang                                                             | e des 2 espèces $PuO_2^+$ et $Pu^{3+}$ 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Figure III.6 et                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Figure III.7:                                                           | Dismutation de $PuO_2^+$ 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Figure III.8 :                                                          | Détermination de la constante de dismutation de $PuO_2^+$ 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Figure III.9 :                                                          | Remutation de Pu <sup>4+</sup> 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Figure III.10 :                                                         | Détermination de la constante de remutation de $Pu^{4+}$ 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Figure III.11 :                                                         | Détermination de la constante standard, $K_v^o$ , selon la S.I.T. 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Figure III.12 :                                                         | Resultats de mesure de la constante de dismutation, $K_V$ , 4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Figure IV.1 :                                                           | Voltammogramme d'une solution d' $UO_2^{21}$ 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| <b>Figure IV.2 :</b> 63                                                 | Mesure du potentiel du couple $UO_2^{2+}/UO_2^+$ par voltammétrie cyclique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| <b>Figure IV.3 :</b><br>64                                              | Mesure du potentiel du couple U <sup>4+</sup> /U <sup>3+</sup> par voltammétrie cyclique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| <b>Figure IV.4 :</b><br>64                                              | Variation du potentiel du couple $U^{4+}/U^{3+}$ en fonction de la température                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Figure IV.5 :                                                           | Mise en évidence de l'interférence entre les couples $PuO_2^{2+}/PuO_2^{2+}$ et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| $Pu^{4+}/Pu^{3+}$                                                       | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Figure IV.6 :                                                           | Mesure du potentiel du couple $PuO_2^{2+}/PuO_2^{+}$ 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Figure IV.6 b :                                                         | Influence de la vitesse de balayage sur la mesure du potentiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| du couple Pu                                                            | $10_2^{2^2}$ /Pu $O_2^{1^2}$ par voltammétrie cyclique 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Figure IV.7 :                                                           | Mesure du potentiel du couple $Pu^{4+}/Pu^{3+}$ 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Figure IV.8 :                                                           | Mesures du potentiel du couple $PuO_2^{-1}/PuO_2^{-1}$ /0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Figure IV.9 :                                                           | Mesures du potentiel du couple Pu <sup>4+</sup> /Pu <sup>3+</sup> 70<br>$P(t_{1}, t_{2}, t_{3}, t_{4}, t_{4}$ |  |  |
| Figure IV.10 :                                                          | Determination du potentiel standard du couple $PuO_2$ /PuO <sub>2</sub> /1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Figure IV.11 :                                                          | Determination du potentiel standard du couple $Pu^{+}/Pu^{-+}/I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 73                                                                      | influence de la temperature sur le potentiel du couple $PuO_2$ / $PuO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Figure IV.13 :                                                          | Influence de la température sur le potentiel du couple Pu <sup>4+</sup> /Pu <sup>3+</sup> 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

**Figure IV.14 :** Influence de la température sur le potentiel du couple  $PuO_2^{2+}/PuO_2^{+}$ 75

- **Figure IV.15 :** Influence de la température sur le potentiel du couple Pu<sup>4+</sup>/Pu<sup>3+</sup>75
- **Figure IV.16 :** Influence de la température sur les coefficients d'interaction spécifique Couple  $PuO_2^{2+}/PuO_2^{+}$  76
- **Figure IV.17 :** Influence de la température sur les coefficients d'interaction spécifique Couple Pu<sup>4+</sup> / Pu<sup>3+</sup> 76
- **Figure V.1 :** Influence de la vitesse de balayage sur le voltammogramme d'une solution d' $UO_2(CO_3)_3^{4-}$  91

**Figure V.2 :** Détermination du potentiel standard du couple  $UO_2(CO_3)_3^{4-1}$ / $UO_2(CO_3)_3^{5-1}$  92

- **Figure V.3 :** Mesures du potentiel du couple  $UO_2(CO_3)_3^{4-}/UO_2(CO_3)_3^{5-}$  92
- **Figure V.4 :** Influence de la température sur le potentiel de  $UO_2(CO_3)_3^{4-}/UO_2(CO_3)_3^{5-}$  93
- **Figure V.5 :** Influence de la température sur le potentiel à force ionique nulle du couple  $UO_2(CO_3)_3^{4-}/UO_2(CO_3)_3^{5-}94$
- **Figure V.6 :** Influence de la température sur les coefficients d'interaction spécifique Couple  $UO_2(CO_3)_3^{4-}/UO_2(CO_3)_3^{5-}$  94
- **Figure V.7 :** Influence de la vitesse de balayage sur le voltammogramme d'une solution de  $PuO_2(CO_3)_3^{4-}$  98
- **Figure V.8 :** Détermination du potentiel standard de  $PuO_2(CO_3)_3^{4-}/PuO_2(CO_3)_3^{5-}$ 99
- **Figure V.9 :** Mesures du potentiel du couple  $PuO_2(CO_3)_3^{4-}/PuO_2(CO_3)_3^{5-}$  99
- **Figure V.10 :** Influence de la température sur le potentiel du couple  $PuO_2(CO_3)_3^{4-}/PuO_2(CO_3)_3^{5-}$  101
- **Figure V.11 :** Influence de la température sur le potentiel à force ionique nulle de  $PuO_2(CO_3)_3^{4-}/PuO_2(CO_3)_3^{5-}$  102
- **Figure V.12 :** Influence de la température sur les coefficients d'interaction spécifique Couple  $PuO_2(CO_3)_3^{4-}/PuO_2(CO_3)_3^{5-}$  102
- **Figure VI.1 :** Spectre d'absorption d'une solution de  $Pu(CO_3)_5^{6-111}$

#### **Bibliographie**

[22 BRO] : Brönsted J.N.. J. Am. Chem. Soc. <u>44</u>, 877- 898(1922)

[35 GUG] : Guggenheim E.A., Turgeon J.C.. Philos. Mag. (Series 7), <u>19</u> 588 (1935)

[36 SCA] : Scatchard G. Chem. Rev. <u>19</u>, 309 (1936)

[49 CON] : Connick R.E., Kasha M., Mc Vey W.H, Sheline G.E.. "The Transuranium Elements", National Nuclear Energy Ser.IV 14B, Mc Graw-Hill Book Company Inc., p.227 (1949)

[49 HIN] : Hindman J.C., Magnusson L.B. La Chapelle T.J.. J. Am. Chem. Soc. <u>71</u>, 687 (1949)

[49 HOW]: Howland J.J, Hindman J.C, Kraus K.A.. "The Transuranium Elements", National Nuclear Energy Ser.IV 14B, Mc Graw-Hill Book Company Inc., p.133 (1949)

[49 KAS] : Kasha M.. "The Transuranium Elements". National Nuclear Energy Ser.IV 14B, Mc Graw-Hill Book Company Inc., p.295 (1949)

[49 KER] : Kern D.M.K., Orleman E.F.. J.Am.Chem.Soc., <u>71</u>, 7102 (1949)

[49 KRA a] : Kraus K.A., Nelson F., Johnson G.L., J.Am.Chem. Soc., <u>71</u>, 2510 (1949)

[49 KRA b] : Kraus K.A., Nelson F., J.Am.Chem. Soc., <u>71</u>, 2517 (1949)

[49 KRA c] : Kraus K.A., Moore G.E... "The Transuranium Elements". National

Nuclear Energy Ser.IV 14B, Mc Graw-Hill Book Company Inc., p.550 (1949)

[49 KRI]: Kritchevsky E., Hindman J.C., J.Am.Chem.Soc., <u>71</u>, 2096 (1949)

[49 ORL] : Orleman E.F, Brody B.B. "The Transuranium Elements". National Nuclear Energy Ser.IV 14B, Mc Graw-Hill Book Company Inc., p.118 (1949)

[51 CON] : Connick R.E., Mc Vey W.H., J. Am.Chem.Soc., 73, 1798 (1951)

[51 RAB] : Rabideau S.W., Lemons J.F., J. Am.Chem.Soc., 73, 2895 (1951)

[52 COH] : Cohen D., Hindman J.C., J. Am. Chem. Soc., 74, 4679 (1952)

[52 COH a] : Cohen D., Hindman J.C., J. Am. Chem. Soc., <u>74</u>, 4682 (1952)

[53 RAB] : Rabideau S.W.. J.Am.Chem.Soc., 75, 798-801 (1953)

[54 CON] : Connick R.E.. "The Actinide Elements" . National Nuclear Energy Ser.IV

14A, Mc Graw-Hill Book Co., Inc, New York, p.254 (1954)

[56 RAB] : Rabideau S.W.. J.Am.Chem.Soc <u>78</u>, 2705 (1956)

[57 NEW] : Newton T.W, Baker F.B., J. Phys. Chem., <u>61</u>, 934 (1957)

[61 COH] : Cohen D.. J. Inorg. Nucl. Chem., <u>18</u>, 2313 (1961)

[62 SCH] : Schwabe K., Nebel D., Z. Phys. Chem., <u>220</u>, 339 (1962)

[64 CAJ] : Caja J., Pradvic V.. J. Electroanal. Chem., <u>8</u>, 390 (1964)

[69 CAJ] : Caja J., Pravdic V.. Croatica Chem. Acta, <u>41</u>, 213 (1969)

[70 BRA] : Brand J.R., Cobble J.W.. Inorg. Chem., <u>9</u>, 912 (1970)

[70 CAS] : Casadio S., Orlandini F., J. Electroanal. Chem., 26, 91 (1970)

[73 AHR] : Ahrland S., Liljenzin J.O., Rydberg J.. "Actinide Solution Chemistry". In

"Comprehensive Inorganic Chemistry", Vol 5. Pergamon Press, New York, N.Y. (1973)

[74 SIM] : Simakin G.A., Volkov Yu F., Visyascheva G.J., Kapsulov I.I., Baklasiova

P.P., Yakovlev N., Sov. Radiochem. <u>16</u>, 838 (1974)

[74 VUK] : Vukovic M., Cukman D., Pradvic V.. Electroanal. Chem. and Inter. Electrochem., <u>54</u>, 209 (1974)

[75 SIM] : Simakin G.A. Electrokhimiya, <u>11</u>, 1026 (1975)

[76 BAE] : Baes C.F., Mesmer R.E... "The Hydrolysis of Cations", Wiley-Interscience publication, New York , p.254 (1976)

[76 FUG] : Fuger J., Oetting F.L.. "The Chemical Thermodynamics of Actinide Elements and Compounds", Part 2 The Actinide Aqueous Ions. IAEA, Vienna (1976)

[77 BON] : Bondietti E.A, Sweeton F.H.. "Transuranics in Natural Environments". 449-475 (june 1977). Oak Ridge National Laboratorty. Edited by White M.G, Dunaway P.B

[77 SIM] : Simakin G.A. Sov. Radiochem., <u>19</u>, 424 (1977)

[77 WAH] : Wahlgren M.A, Alberts J.J, Orlandini K.A, Kucera E.T.. Argonne National Laboratory ANL-77-65, part III:92-94 (1977)

et Wahlgren M.A, Alberts J.J, Nelson D.M, Orlandini K.A, Kucera E.T.. Argonne National Laboratory, ANL-77-65, part III:95-98 (1977)

[78 NEL]: Nelson D.M., Lowett M.B., Nature, 276, 599, (1978)

et IAEA Symp., Vienna, (1980)

[78 RAI] : Rai D., Serne R.J, Swanson J.L.. Pacific Northwest Laboratory, PNL SA 7027 (déc.1978)

[78 WAH] : Wahlgren M.A., Nelson D.M., Orlandini K.A., Larson R.P.. Argonne National Laboratory ANL-78-65,64-68 (1978)

[78 WOO] : Woods M., Mitchell M.L., Sullivan J.C., Inorg. Nucl. Chem. Lett. <u>14</u>, 464 (1978)

[79 CLE] : Cleveland J.M.. "The Chemistry of Putonium", La Grange Park, Illinois 60525, American Nuclear Society (1979)

[79 NEL] : Nelson D.M., Orlandini K.A.. Argonne National Laboratory ANL-79-65, part III:57-59 (1979)

[80 BON] : Bondietti E.A, Trabalka J.R.. Radiochem.Radioanal.Lett., <u>42</u>, 169 (1980)

[80 CAU] : Cauchetier P.. Analusis, <u>8</u>, 336 (1980)

[80 RAI]: Rai D., Serne R.J, Swanson J.L. J. Environ. Qual., <u>9</u>, 417 (1980)

[80 RAI a] : Rai D., Serne R.J., Moore D.A.. Soil. Sci. Soc. of America Journal, <u>44</u>, 480(1980)

[80 WES] : Wester D.W., Sullivan J.C.. Inorg. Chem. <u>19</u>, 2838 (1980)

[81 CAU] : Cauchetier P.. Anal. Chim. Acta, <u>124</u>, 449 (1981)

[81 HEL] : Helgeson H.C, Kirkham D.H, Flowers G.C.. Am. J. Sci., <u>281</u>, 1249 (1981)

[81 WES] : Wester D.W., Sullivan J.C., J. Inorg. Nucl. Chem., <u>43</u>, 2919 (1981)

[82 BIE] : Biederman G., Bruno J., Ferri D., Grenthe I., Salvatore F., Spahiu K.. Mater. Res. Soc. Symp. Proc., <u>12</u>, 791 (1982)

[82 MAR] : Martinot L., Fuger J.. "Standard Potentials in Aqueous Solution", Dekker M., Inc., New York, NY10016

[82 MAY] : Maya L. Inorg. Chem., <u>21</u> 2895 (1982)

[82 MAY a]: Maya L. Inorg. Chem., <u>65</u> L13 (1982)

[83 CIA] : Ciavatta L., Ferri D., Grenthe I., Salvatore F., Spahiu K.. Inorg Chem., <u>22</u>, 2080 (1983)

[83 FER] : Ferri D., Grenthe I., Salvatore F., Inorg. Chem., <u>22</u>, 3162 (1983)

[83 FER a] : Ferri D., Grenthe I., Hietanen S., Salvatore F., Acta Chemica Scandinavica, <u>A37</u>, 359 (1983)

[83 MAY] : Maya L. Inorg. Chem., <u>22</u>, 2093 (1983)

[83 SHO] : Sholkovitz E. R.. "The Geochemistry of Plutonium in Fresh and Marine Water Environments", Earth Science Reviews, <u>19</u>, 95-161 (1983).

[83 WES] : Wester D.W., Sullivan J.C.. Radiochem. Radioanal. Letter., <u>57</u>, 35 (1983)

[84 BLA] : Blanc P., Madic C.. Inorg. Chim. Acta, 95, 141 (1984)

[84 GRE] : Grenthe I., Ferri D., Salvatore F., Riccio G., J. Chem. Soc. Dalton Trans., 2439 (1984)

[84 MAY] : Maya L. Inorg. Chem., 23, 3926 (1984)

[84 RAI]: Rai D.. Radiochimica Acta <u>35</u>, 97 (1984)

[84 VAR] : Varlashkin P.G, Hobart D.E, Begun G.M, Peterson J.R.; Radiochim. Acta, <u>35</u>, 91 (1984)

[84 VAR a] : Varlashkin P.G, Begun G.M, Peterson J.R.. Radiochim. Acta, <u>35</u>, 211 (1984)

[85 BAR] : Bard J., Parsons R., Jordan J.. "Standard Potentials in Aqueous Solution", Dekker M., Inc., New York, NY10016, p.304 (1985)

[85 NEW] :Newton T.W., Sullivan J.C.. "Handbook of th Physics and Chemistry of the Actinides", Volume 3, Ed. Freeman A.J., Keller C. (1985)

[85 POU] : Poulangy Ch.. "Potentiel d'oxydoréduction du couple Pu(VI)/Pu(IV) en milieu bicarbonate". Travail réalisé au laboratoire et non publié (1985), les résultats sont donnés dans l'annexe. N°14

[86 KAT] : Katz J.J., Seaborg G.T., Morss L.R.. "The Chemistry of the Actinide Elements" Volume 1 et 2. Chapman and Hall, (1986)

[86 GRE] : Grenthe I., Riglet Ch., Vitorge P., Inorg. Chem., <u>25</u>, 1679 (1986)
[86 GRE a] : Grenthe I., Robouch P., Vitorge P., J. Less Common Metals, <u>122</u>, 225(1986)

[87 BLA] : Blanc P.. "Contribution à l'étude de thermoéléments en milieux aqueux : Théorie et applications". Thèse soutenue le 3 / 07 / 87. (Université Paris VI). Egalement : rapport CEA-R-5406 (1987)

[87 RIG]: Riglet Ch, Vitorge P, Grenthe I.. Inorganica Acta, <u>133</u>, 323 (1989)
[87ROB a]: Robouch P.. "Contribution à la prévision du comportement de l'américium, du plutonium et du neptunium dans la géosphère. Données chimiques." Thèse soutenue le 13 / 11 /87 (Université L. Pasteur à Strasbourg). Egalement : rapport CEA-R-5473 (1989). Voir aussi [86 GRE a].

[87 ROB] : Robouch P., Vitorge P., Inorg. Chim. Acta., <u>140</u>, 239 (1987)

[88 HAN] : "CRC Handbook of Chemistry and Physics" p.D253 . 69<sup>th</sup> Edition CRC Press, Inc., Boca Raton, Floride (1988)

[88 ULL] : Ullman W.J, Schreiner F.. Radiochim. Acta., 43, 37 (1988)

[89 BRU] : Bruno J, Grenthe I, Robouch P.. Inorg. Chim. Acta, <u>158</u>, 221(1989)

[89 CAC] : Caceci M.. Anal. Chemistry, <u>61</u> N°20, 2324 (1989)

[89 KIM] : Kim J.I., Kanellakopulos B.. Radiochim. Acta., <u>48</u>, 145 (1989)

[89 RIG]: Riglet Ch., Robouch P., Vitorge P., Radiochimica Acta, <u>46</u>, 85(1989)

[89 RIG a] : Riglet Ch.. "Chimie du neptunium et autres actinides en milieu

carbonate". Thèse soutenue le 17 / 03 /89 (Université Paris VI). Egalement rapport CEA-R-5535 (1990). Voir aussi [86 GRE a]

[89 WAG] : Wagner J.F.. Commissariat à l'Energie Atomique (Fontenay aux Roses). Il s'agit de mesures (non publiées) complémentaires à [80 CAU] et [81 CAU]

[90 BEN] : Bennett D.. "Stability Constants Important to the Understanding of Plutonium in Environmental Waters. Hydroxy and Carbonate Complexation of  $PuO_2^+$ ". Thèse soutenue le 20 / 04/ 1990 (Université de Californie, Berkeley)

[90 BRU] : Bruno J., Grenthe I., Lagerman B.. Acta. Chem. Scan., <u>44</u>, 896 (1990)

[90 CAP] : Capdevila H., Vitorge P., J. Radioanal. Nucl. Chem., <u>143</u>, 2, 403 (1990)

[90 TOT]: Toth L.M, Bell J.T, Friedman H.A.. Radiochimica Acta, <u>49</u>, 193 (1990)

[91 CAP] : Capdevila H., Vitorge P., Giffaut E... Présentation orale au congrès Migration

91, Jerez de la Frontera, Espagne.. Radiochim. Acta (1992), sous presse.

[91 NIT]: Nitsche H. Radiochim. Acta, <u>52</u>/<u>53</u> 3 (1991)

[91 VIT] : Vitorge P.. Commissariat à l'Energie Atomique (Fontenay aux Roses) DCC/DSD/SCS. Communication personnelle à paraître dans [?? LEM].

[91 VIT a ] : Vitorge P.. Présentation orale au congrès Migration 91, Jerez de la Frontera, Espagne. Radiochim. Acta (1992), sous presse.

[92 GRE] : Grenthe I., Fuger J., Lemire R.J, Muller A.B, Nguyen-Trung C., Wanner H.

NEA-TDB Chemical Thermodynamics of Uranium. Elsevier Science Publishers (1992)

[?? GIF]: Giffaut E.. Thèse en cours au laboratoire, soutenance prévue en 1993

[?? LEM] : Lemire R.J., Nitsche H., Sullivan J.C, Ullman J.. Chemical Thermodynamics of Plutonium. NEA-TDB, Préparation en cours