1991

Stability of Pentavalent Plutonium. Spectrophotometric study of PuO₂⁺ and Pu⁴⁺ disproportionations in perchloric media.

H.Capdevila, P.Vitorge, E.Giffaut

CEA DCC/DSD/SCS/SGC/LAT, Fontenay-aux-Roses, France

The disproportionation constant of pentavalent plutonium into hexavalent and trivalent forms are determined at $-lg[H^+] = 1$, in perchloric media of varying ionic strength from 0.1 M to 3 M. These data are extrapolated to zero ionic strength using the Specific Interaction Theory in order to deduce the standard disproportionation constant and the interaction coefficient:

 $lgK(V)^{\circ} = 2.6 \pm 0.5$ $\Delta \varepsilon = 0.09 \pm 0.1$ (kg/mol).

 $K(V)^{\circ}$ temperature influence is estimated: PuO_2^+ is less stable when temperature is increased. The irreversible redox potentials of plutonium are then calculated using $PuO_2^{2^+}/PuO_2^+$ and Pu^{4^+}/Pu^{3^+} redox potentials and $K(V)^{\circ}$. The Pu^{4^+} formation from $PuO_2^{2^+}$ and Pu^{3^+} in 1 M HClO₄ solution is also studied.

The results of this experiment and the previous ones are compared: they are consistent. Published work is also discussed.