1993

Adjustment of activity coefficients as a function of changes in temperature, using the specific interaction theory

Eric Giffaut, Pierre Vitorge and Hélène Capdevila CEA DCC/DESD/SCS/SGC/LAT, Fontenay-aux-Roses, France

The aim of this work is to propose and to check approximations to calculate from only a few experimental measurements, ionic strength I and temperature T, influences on Gibbs' energy G, formal redox potential E and standard equilibrium constant K. Series expansions vs. T are first used: S and $C_{\rm p}/2T^{\circ}$ are typically the first- and second-order terms in -G. In the same way, $-\Delta H$ and $T^2 \Delta C_p/2$ are the first- and second-order terms of R In K expansions vs. 1/T. This type of approximation is discussed for E of the M^{4+}/M^{3+} , MO_2^{2+}/MO_2^{+} and $MO_2(CO_3)_3^{4-}/MO_2(CO_3)_3^{5-}$ couples (M \equiv U or Pu) measured from 5 to 70 °C, for the standard ΔG of some solid U compounds, calculated from 17 to 117 °C, and for ΔC_p , ΔG and log K of the $CO_{2(aq)}/HCO_3^-$ equilibrium from 0 to 150 °C. Excess functions X^{ex} are then calculated from activity coefficients γ : enthalpy H or heat capacity C_p adjustment as a function of I changes is needed only when the γ adjustment as a function of T changes is needed. The variations in the specific interaction theory coefficient ϵ with T are small and roughly linear for the above redox equilibria and for the mean y of chloride electrolytes: first-order expansion seems enough to deduce ϵ , and then the excess functions G^{ex} , S^{ex} and H^{ex} , in this T range; but second-order expansion is more consistent for estimation of C_{n}^{ex} .