Redox Potentials of PuO₂²⁺/PuO₂⁺ and Pu⁴⁺/Pu³⁺ at Different Ionic Strengths and Temperatures. Entropy and Heat Capacity.

H.Capdevila, P.Vitorge

CEA DCC/DESD/SESD, Section de Géochimie, F-92265 Fontenaux aux Roses (France)

The redox potentials of the reversible couples of plutonium are measured by using cyclic voltammetry, in perchloric media at ionic strength *I*, and temperature *T*. At each *T*, the experimental results, E(T,I), are extrapolated to I = 0 by applying the Specific Interaction Theory (S.I.T.) to get interaction coefficients $\Delta \varepsilon(T)$, and E(0, T) (e.g., standard potential E° , when $T = 25^{\circ}C$). It is shown that a systematic error due to disproportionation or redox impurities could explain some discrepancies observed between numerical values already published. The experimental data are fitted to the following series expansion about T° :

$$E(T) = E(T^{\circ}) + \frac{\Delta S(T^{\circ})}{F} (T - T^{\circ}) + \frac{\Delta C_p(T^{\circ})}{2T^{\circ}F} (T - T^{\circ})^2 + \dots$$

The entropy changes of ΔS , and heat capacity changes ΔC_p , are then determined. A second order expansion of $\Delta \varepsilon(T)$ and of the Debye Huckel term are used to propose extended S.I.T. equations that account for both the ionic strength and the temperature influences on ΔG , ΔS , ΔC_p , ΔH , and IgK. These equations are first checked using published mean activity coefficients of HCI and NaCI and then for redox equilibria of plutonium.

For the $PuO_2^{2^+}/PuO_2^+$ couple		and for the Pu ⁴⁺ /Pu ³⁺ couple	
E°	= 968 ± 10 mV	E°	= 1044 ± 10 mV
$\Delta \varepsilon(T)$	= -0,22 \pm 0.03 kg.mol ⁻¹	$\Delta \varepsilon(T)$	= -0,33 \pm 0.05 kg.mol ⁻¹
$\left(\frac{\partial \Delta \epsilon}{\partial T}\right)_P$	= 0.001 kg(mol.K) ⁻¹	$\left(\frac{\partial \Delta \epsilon}{\partial T}\right)_{P}$	= 0.002 kg(mol.K) ⁻¹
$\frac{\Delta S^{\circ}}{F}$	= $0.34 \pm 0.04 \text{ mV.K}^{-1}$	$\frac{\Delta S^{\circ}}{F}$	= $1.67 \pm 0.14 \text{ mV.K}^{-1}$
$\frac{\Delta C_p}{F}$	= $4.04 \pm 0.90 \text{ mV.K}^{-1}$	$\frac{\Delta C_p}{F}$	= $1.77 \pm 3.20 \text{ mV.K}^{-1}$

The small discrepancy between the numerical values of entropy changes deduced from electrochemical and calorimetric techniques are discussed for actinides redox couples.