Electrochemical Characterisation of the Ce(IV) limiting carbonate complex

Chantal Riglet-Martial¹, Pierre Vitorge² and Véronique Calmon¹

¹CEA-Cadarache, DCC/DESD/SESD, 13108 Saint-Paul-lez-Durance cedex, France ²CEA-Saclay, DCC/DESD/SESD, 91191 Gif-sur-Yvette Cedex, France

The stoichiometry and the thermodynamic formation constant of the limiting complex of Ce(IV) were determined at 19.3 ± 1.0°C by using cyclic voltametry technique at a hanging mercury drop working electrode in concentrated bicarbonate/carbonate medium. The Ce(IV/III) redox potential was measured at pH varying from 9.3 to 10.6 and [CO₃²⁻] varying from 1.0 to 1.5 M by performing a CO₃²⁻ titration with CO₂ gas. The ionic strength and junction potential effects were taken into account for the potentiometric calibrations and measurements. Quantitative interpretation of the variations of the formal potential E_{IV/III} showed that no polymerisation took place during the redox reaction, and that two CO32- ligands, but no OH ligand, were exchanged. As the accepted stoichiometry for the limiting complex of Ce(III) is $Ce(CO_3)_4^{5-}$, the Ce(IV) species is $Ce(CO_3)_6^{8-}$. In a 3.06 molal Na⁺ carbonate/bicarbonate medium (lonic strength = 4.33 mol.kg⁻¹), $E_{IV/III}^0$ = 0.161 ± 0.008 V/SHE (in molal units) was measured. This value, combined with the published $Ce(CO_3)_4^{4-1}$ formation constant and the (re-evaluated) (Ce⁴⁺/Ce³⁺) standard potential, is used to calculate the $Ce(CO_3)_6^{8-}$ formation constant $log_{10}(\beta_6^{IV}) = 42.2 \pm 0.5$ (defined in molal concentration except for Ce⁴⁺ in activity : see table 1) in the same medium. The values of $E_{TV/III}^0$ and $log_{10}(\beta_6^{IV})$ are ionic strength dependant, e.g. $E_{IV/III}^0 = 0.182 \pm 0.009 \text{ V/SHE}$ and $\log_{10}(\beta_6^{IV}) = 41.8 \pm 0.5$ in molar units in a 2.67 M NaClO₄ medium (Na⁺ molality = molal ionic strength = 3.06 mol.kg⁻¹). The possible formation of $Ce(CO_3)_5^{6-}$ is discussed under the experimental conditions used, $\log_{10}(\beta_5^{IV}) \le 41.8 \pm 0.5$ (in molal units).