Np(VI)/Np(V) en milieu carbonate concentré Sophie Offerlé, Hélène Capdevila, Pierre Vitorge

CEA DCC/DESD/SESD/Section de GéoChimie, 92265 Fontenay aux Roses cedex, France

- Février 1995 -

- Note CEA-N-2785 -

ISSN 0429 - 3460

0DEA.DOC, le 16/01/95 10:38	Sommaire. CONT	'ACT.j	pierre.vitorge(at)cea.fr.CEA-N-2785	
Avant-propos	3 4.5.2. Np(V)	9	A2. Vitesse de balayage 18	
1. Introduction	3 4.5.3. Electrode de référence	9	A3. Paramètres physiques en fonction	
2. Bibliographie	4 4.6. Principe de la méthode	9	de la température 19	
3. Coefficients d'activité en milieu	4.6.1. Montage électrochimiqu	e 9	A4. Formule de la TIS 19	
carbonate de sodium	5 4.6.2. Appareillage	9	A5. E'° et $\Delta \epsilon$	
3.1. Formule de Debye-Hückel	5 5. Résultats	10	A6. Résultats expérimentaux 22	
3.2.2. Théories d'interaction	5.1.Vitesse de balayage	10	Α7. Δε(Τ)	
spécifique	5 5.2.Potentiel	11	Α8. ΔS, ΔCp	
3.2.1. TIS (SIT en anglais)	5 5.3.Force ionique	11	A9. TIS pour ΔS et ΔCp	
3.2.3. Formule de Pitzer	6 5.4. Température	12	A10. Dissociation du complexe	
3.3. Milieu carbonate	6 5.5.Force ionique et température .	5.5. Force ionique et température 13		
4. Méthodologie	6 6. Discussion	14	Suppléments 25	
4.1. Equilibre d'oxydoréduction	6 6.1. Valeurs du potentiel	14	S1. Résultats expérimentaux	
4.2. Force ionique	7 6.2. Force ionique	15	S2. Le milieu carbonate	
4.3. Température	7 6.3. Température	16	S2.1. Constante d'équilibre et TIS 27	
4.4. Température et force ionique	8 6.3. Température et force ionique.	16	S2.2. Electrolytes faibles 27	
4.4.1. L'entropie	8 7. Conclusion	16	S3. Electrolytes forts	
4.4.2. La capacité calorifique	8 Bibliographie	17	S3.1. ε 33	
4.5. Préparation des solutions	9 Annexes	18	S3.2. Activité d'eau 39	
4.5.1. Na2CO3	9 A1 Formule de Pitzer			

Résumé

Le potentiel d'oxydoréduction, E, du couple Np(VI)/Np(V) est mesuré par voltampérométrie cyclique en milieu $Na_2CO_3.0,22\ 0,55\ 1\ 1,25\ 1,5\ M$ et à T=5 15 25 35 45 55 et 60°C par rapport à une électrode Ag/AgCl de potentiel de jonction (mesuré) inférieur à 0,002V. A chaque T, E est extrapolé à I=0 à l'aide de la formule de la TIS, $E(I) = E(0) + 9 \frac{a\sqrt{I}}{1 + Ba_i\sqrt{I}} + 2\Delta\epsilon m$. A chaque I, E est ajusté à un polynôme du second degré pour trouver les

variations d'entropie, ΔS , et de capacité calorifique, ΔCp . L'influence de la force ionique sur ΔS et ΔCp calculée à l'aide de formules déduites de celle de la TIS, est cohérente avec les résultats. Dans les conditions standard $E^{\circ}=0.341\pm$ 0,017V/ESH, $\Delta S^{\circ}=-190\pm 5J$ /K/mol, $\Delta Cp^{\circ}=-345\pm 750J$ /K/mol. $\Delta \epsilon=0,15\pm 0,05-(0,005\pm 0,001)\Delta T+0,00004\Delta T^{2}$ kg/mol où ΔT =T-25°C. Ces valeurs numériques sont cohérentes avec celles de U et Pu. Le potentiel est supérieur d'environ 0,06V aux mesures publiées en milieu Na₂CO₃ 1M, mais le potentiel de jonction n'y est généralement pas pris en compte. Il s'agit d'un stage de DEA, les résultats sont en cours d'examen par un des auteurs dans le cadre de la TDB (AEN-OCDE). En supplément l'activité d'eau dans un électrolyte faible est calculée et des corrélations entre valeurs numériques de ε ou avec le rayon ionique, sont montrées.

Summary

The formal potential, E, of the Np(VI)/Np(V) redox couple is measured versus a Ag/AgCl electrode with junction potential less than 0.002V, by using cyclic voltammetry in 0.22, 0.55, 1, 1.25 and 1.5 M Na₂CO₃. solutions, and at T=5, 15, 25, 35, 45, 55 and 60°C. At each T, E is extrapolated to I=0 by using the SIT formula $E(I) = E(0) + 9 \frac{a\sqrt{I}}{1 + Ba_i \sqrt{I}} + 2\Delta\varepsilon m$. At each I, E data are fitted to a second order polynomial expression as a function of T, to deduce the entropy change, ΔS , and the heat capacity change, ΔCp . The variations of ΔS and ΔCp with I calculated by using formulae deduced from the SIT one, are consistent with the data. In the standard conditions $E^{\circ}=0.341\pm0.017V/ESH$, $\Delta S^{\circ}=-190\pm5J/K/mol$, $\Delta Cp^{\circ}=-345\pm750J/K/mol$. $\Delta \epsilon = 0.15 \pm 0.05 - (0.005 \pm 0.001) \Delta T + 0.00004 \Delta T^2$ kg/mol, where $\Delta T = T - 25^{\circ}$ C. These numerical values are consistent with the U and Pu ones. The redox potential measured in 1M Na₂CO₃ solution, is greater by about 0.06V than the published ones. Junction potentials might account for this difference. It is a 4 month pre PhD work, that is being reviewed by one of the author for the Thermodynamic Data Base of NEA-OECD. Supplementary materials are added, concerning the calculation of activity of water in a weak electrolyte, and on correlation between the numerical values of ε , or with ionic radius.

Résumé long

Le stockage des déchets est depuis plusieurs années l'une des grandes préoccupations de l'industrie nucléaire. Une des solutions envisagées est d'enterrer, dans une formation géologique stable, les fûts contenant les radioéléments à durée de vie longue (des transuraniens par exemple). Dans de telles conditions de stockage, il est essentiel de prévoir, à long terme, le comportement de ces radioéléments dans l'environnement. Les eaux naturelles risquent d'être un des principaux vecteurs de transport de la radioactivité. Dans ce cadre, le laboratoire d'accueil mesure notamment les potentiels d'oxydoréduction de couples : ceux des actinides sont réversibles en milieu acide, et proches de la réversibilité en milieu carbonate. La méthodologie et les techniques électrochimiques ont déjà été choisies, testées et validées par des études bibliographiques et expérimentales sur l'uranium. Ces techniques : polarographie sur mercure et voltampérométrie cyclique ont ensuite été adaptées pour les actinides radioactifs : neptunium, plutonium, américium.

Les potentiels standard sont calculés par extrapolation à force ionique nulle à partir des potentiels mesurés à différentes forces ioniques, en prenant en compte les coefficients d'activité et potentiels de jonction. Les coefficients d'activité sont calculés avec la formule d'une théorie de l'interaction spécifique : la TIS (ou SIT en anglais) sélectionnée par la banque de données thermodynamiques de l'OCDE (AEN-TDB). Le coefficient d'activité s'écrit : $lg\gamma_i = -z_i^2D + \sum_j \epsilon(i,j)m_j$ avec $D = \frac{a\sqrt{I}}{1 + Ba_i\sqrt{I}}$, où I est la force ionique, z_i la charge de l'ion i, m_j la molalité de l'ion

j, et $\varepsilon(i, j)$ le coefficient d'interaction spécifique entre les ions i et j de charges opposées. Selon cette méthode issue du modèle de Brönsted-Guggenheim-Scatchard, les paramètres A et Ba_i sont fixés aux valeurs 0,5091 et 1,5 respectivement à 25°C, dans le terme de Debye-Hückel, D. Le terme du deuxième viriel, $\sum \varepsilon(i, j)m_j$, prend en compte les interactions spécifiques qu'exercent entres eux les ions de charges opposées. La TIS suppose que les ε sont indépendants de la force ionique, $\varepsilon(i, j) = \varepsilon(j, i)$ et que $\varepsilon(i, j) = 0$ si i et j sont de charge de même signe ou nulle. ε , a et Ba_i sont indépendants de la force ionique ; mais varient en fonction de la température.

L'étude de l'influence de la température sur le potentiel d'oxydoréduction permet de déterminer les constantes thermodynamiques telles que ΔS et ΔCp . En outre, de récentes publications du laboratoire ont proposé des extensions de la TIS pour modéliser l'influence simultanée de la température et de la force ionique.

En milieu carbonate, peu de mesures ont été faites sur le couple Np(VI)/Np(V), il nous a paru intéressant d'approfondir les connaissances sur ce couple. Le but de ce stage est de mesurer le potentiel d'oxydoréduction du couple Np(VI)/Np(V), en fonction de la force ionique et de la température, par voltampérométrie cyclique. Les résultats sont traités en se basant sur la TIS et ses extensions, pour en vérifier ainsi la validité.

Avant d'entrer dans le coeur du sujet, quelques calculs permettent de montrer comment on peut relier entre elles différentes approches de correction de force ionique : activité d'eau, formules de la TIS ou de Pitzer. En supposant NaHCO₃ et Na₂CO₃ comme étant des électrolytes forts, les valeurs des coefficients d'interaction spécifiques : $\epsilon(CO_3^{2^2}, Na^+)$ et $\epsilon(HCO_3^{-}, Na^+)$ sont ainsi redéterminées. Elles sont en accord avec celles adoptées par la TDB.

Abordons maintenant l'étude expérimentale faite sur l'équilibre du couple Np(VI)/Np(V). La force ionique est imposée par Na₂CO₃ xM, avec x = 2; 1,5; 1,25; 1; 0,5 et 0,2 M. Dans ces conditions les seules espèces à prendre en compte sont NpO₂(CO₃)₃⁴⁻ et NpO₂(CO₃)₃⁵⁻. Pour éviter la détérioration de l'électrode de référence Ag/AgCl, elle est placée dans une allonge contenant quelques grains de AgCl et un mélange NaClO₄, NaCl de même force ionique que celui du milieu étudié, et dont elle est séparée par du verre fritté. Le potentiel de jonction mesuré reste ainsi inférieur à 2 mV. A la température standard, bien que le système ne soit pas parfaitement réversible il a été vérifié que la vitesse de balayage n'a pas d'influence sur la demi-somme des potentiels de pic qui est assimilée au potentiel thermodynamique. Ce potentiel redox est mesuré à chaque force ionique aux températures variant entre 5°C et 60°C.

Les potentiels, E'°(T,I), sont calculés par rapport à l'électrode standard. La TIS permet de calculer les valeurs des potentiels à force ionique nulle, E'°(T,0), et la différence des coefficients d'interaction spécifique des deux espèces majoritaires, $\Delta \varepsilon$ (T). E'°(T,I), E'°(T,0) et $\Delta \varepsilon$ (T) décroissent en fonction de la température, de façon pratiquement linéaire. L'écart à la linéarité traduit la contribution de la capacité calorifique. E'°(T,I) est développé au deuxième ordre en x : E'°(T,I) = a + b x + c x² où a = E'°(T°,I), b = $\Delta S(T^\circ,I) / F$ et c = $\Delta Cp(T^\circ,I) / (2 F T^\circ)$. Le même calcul est réitéré (à partir des valeurs extrapolées à I=0) pour déterminer les constantes standard $\Delta S(T^\circ,0) / F$ et $\Delta Cp(T^\circ,0) / (2 F T^\circ)$. La variation de $\Delta S(T^\circ,I)$ en fonction de la molalité de Na est mesurable et conforme aux prévisions de l'extension de la TIS. La variation de $\Delta Cp(T^\circ,I)$ en fonction de la molalité de Na⁺ n'est pas significative. Ces résultats sont proches de ceux obtenus au laboratoire pour les couples analogues de l'uranium et du plutonium.

Tableau 1 : Couples d'oxydoréduction M(VI)/M(V), potentiel, variation d'entropie, de capacité calorifique, de coefficients d'interaction spécifique, $\Delta \varepsilon = \varepsilon (MO_2(CO_3)_3^{4-}, Na^+) - \varepsilon (MO_2(CO_3)_3^{5-}, Na^+)$ et de ses dérivées première et seconde par rapport à la température.

		U [92GRE]	Np (ce travail)	Pu [92CAP]		
E'°(T°,0)	(mV/ENH)	-763 ± 10	341 ± 17	190 ± 10		
$\Delta S(T^{\circ},0)$	(J.K ⁻¹ ·mol. ⁻¹)	-158 ± 4	-190 ± 5	-178 ± 26		
$\Delta Cp(T^{\circ},0)$	(J.K ⁻¹ ·mol. ⁻¹)	-345 ± 154	-345 ± 750	-516 ± 550		
$\Delta \epsilon(T^{\circ})$	(kg.mol. ⁻¹)	$0,92 \pm 0,1$	$0,15 \pm 0,05$	$0,18 \pm 0,2$		
$\Delta \epsilon'(T^{\circ})$	$(kg.mol.^{-1}K^{-1})$	$-0,007 \pm 0,001$	$-0,005 \pm 0,001$	$-0,002 \pm 0,001$		
$\Delta \epsilon''(T^{\circ})$	(kg.mol. ⁻¹ K ⁻²)	0,00012	0,00004	0,00004		

Avant-propos

Cette note est le rapport de stage de DEA (Chimie analytique, INSTN-Paris 6) de Sophie Offerlé, effectué de mars à juin 1994 au CEA (DCC/DESD/SESD/Section de GéoChimie) sous la responsabilité d'Hélène Capdevila et de moimême. Il a été remis en page, corrigé de quelques coquilles et impropriétés ou erreurs de langage. J'ai rajouté (§ Suppléments) des suppléments : résultats expérimentaux tirés du cahier de laboratoire et des fichiers EXCEL utilisés par Sophie Offerlé pour ses calculs, calculs théoriques et numériques sur l'interprétation de mesures isopiestiques dans des électrolytes faibles, valeurs numériques et corrélations concernant certains coefficients d'activité. Je sais notamment que Sophie Offerlé a effectivement mesuré les potentiels de jonction. La seule modification importante concerne la discussion sur la comparaison des résultats avec la littérature afin de bien mettre en évidence qu'un écart un peu supérieur aux incertitudes, existe. Il n'existe pas d'information dans ces résultats publiés, sur les potentiels de jonction, ce qui me conduit à proposer d'augmenter les incertitudes de quelques dizaines de mV : il n'existe alors plus d'écart. Toutefois (voir les notes des § Suppléments) il y a peut-être aussi une petite faute sur les conversions de molarité en molalité induisant une erreur de quelques mV. La constante de formation du complexe limite de Np(VI) que j'ai estimée à partir des résultats de Sophie Offerlé, correspond tout à fait aux prévisions faites par analogie avec les connaissances actuelles sur U(VI) et Pu(VI). Comme les résultats de Sophie Offerlé sont de loin les plus complets et les mieux explicités, ils sont à la base de la sélection en cours de la Base de données thermodynamiques de l'OCDE (AEN-TDB). Le chapitre concernant Np(VI) en milieu carbonate devrait être publié sous forme de note bibliographique CEA en 1995, il inclura l'examen critique de la présente note.

Janvier 1995, Pierre Vitorge

1. Introduction

Aujourd'hui, l'utilisation des centrales nucléaires de production d'énergie soulève le problème de la gestion, à court et à long terme, de quantités croissantes de déchets hautement radioactifs contenant des produits de fission et des matériaux activés. Pour le stockage définitif des déchets radioactifs, l'une des solutions possibles est l'enfouissement des fûts dans des formations géologiques stables. Dans l'étude des dangers que peuvent présenter les produits radioactifs, il faut en plus de l'activité et du tonnage, faire intervenir, étudier et modéliser leur comportement dans l'environnement et en particulier, leur migration éventuelle dans les eaux souterraines. Dans cette optique, le laboratoire d'accueil a entrepris des études sur la complexation, l'oxydoréduction des actinides (uranium, neptunium, plutonium, américium) en milieu carbonate et en particulier sur la détermination des potentiels d'oxydoréduction, des constantes thermodynamiques, données essentielles dans l'étude chimique de ces radioéléments. Les banques de données thermodynamiques concernant la chimie des actinides ne sont pas encore complètes et cohérentes. L'isotope 237 du neptunium a une radiotoxicité à long terme très élevée, sa période est 2,2.10⁶ années. Ces considérations témoignent de l'importance de son étude. Mon stage concerne la chimie du neptunium en milieu carbonate concentré, il fait suite à différentes études sur cet élément et sur d'autres actinides (uranium et plutonium) analogues chimiques, que nous évoquons maintenant.

En milieu carbonate, le neptunium au degré d'oxydation 5 est le seul actinide suffisamment stable pour qu'on puisse étudier directement sa complexation. Dans les conditions que nous adopterons (milieu carbonate concentré) il se forme majoritairement [89RIG] le complexe $NpO_2(CO_3)_3^{5-}$. Il peut se dissocier en $NpO_2(CO_3)_2^{3-}$ sous l'effet de la diminution de la concentration de CO_3^{2-} ou de la diminution de la force ionique. Il a été montré que l'hydrolyse est négligeable devant la complexation par les ions carbonates. Le neptunium au degré d'oxydation 6 a même structure et même

stoechiométrie que l'uranium dans le milieu considéré, il se présente sous la forme $NpO_2(CO_3)_3^{4-}$. Contrairement à l'uranium et au plutonium, les constantes de complexation du Np(VI) ne sont pas fiables, dans la pratique il semble qu'on puisse les estimer par analogie à partir de celles de l'uranium et du plutonium [92CAP].

En milieu carbonate concentré, il a été montré que le couple U(VI)/U(V) est un système irréversible pour la polarographie [89RIG]. Ce couple, Np(VI)/Np(V) et Pu(VI)/Pu(V) mettant en jeu un électron, sont par contre proches de la réversibilité pour la voltampérométrie cyclique [89RIG][92CAP].

Pour extrapoler les constantes d'équilibre et les potentiels d'oxydoréduction aux conditions standard (force ionique nulle) une formule basée sur une Théorie de l'Interaction Spécifique [89RIG] [92CAP], TIS (SIT en anglais), est utilisée par la banque de données thermodynamiques [92GRE] de l'agence pour l'énergie nucléaire (OCDE AEN TDB) à laquelle participe le laboratoire d'accueil. Il a donc sélectionné [87RIG] la TIS, contribué à développer son utilisation et récemment proposé des formules pour prendre en compte également l'influence de la température en se basant sur des développements limités au deuxième ordre en fonction de la température [95CAP]. Cela revient à appliquer la TIS pour les corrections de force ionique sur l'entropie et la capacité calorifique.

Le stage a pour objectif de mesurer le potentiel du couple Np(VI)/Np(V) en milieu carbonate concentré. Il s'agit d'abord de vérifier que, comme pour l'uranium et le plutonium, la voltampérométrie cyclique donne des résultats cohérents. Cette méthode électrochimique semble suffisamment précise. Elle est surtout rapide ce qui devrait nous permettre d'étudier l'influence de la force ionique et de la température. On devrait alors pouvoir déterminer la valeur standard et vérifier en même temps si la TIS reste applicable à ces espèces très chargées, et à la prise en compte de l'influence de la température comme indiqué ci-dessus.

Dans la première partie de ce travail, nous rappellerons brièvement les modèles empiriques (Debye-Hückel, Brönsted-Guggenheim-Scatchard, Pitzer) et leurs équations introduisant les coefficients d'activité en fonction des termes de Debye-Hückel et des coefficients d'interaction spécifique. En redéterminant la valeur des coefficients d'interaction spécifique du système carbonate à partir des coefficients d'activité calculés par l'équation de Pitzer, nous montrerons comment, à partir d'équations de la thermodynamique, il est possible de passer d'une formule à l'autre, de calculer les coefficients d'activité moyens et l'activité d'eau. Nous nous consacrons alors à l'étude de l'équilibre Np(VI)/Np(V). Les valeurs des constantes du neptunium seront enfin comparées à celles de l'uranium et du plutonium.

2. Bibliographie

Cette partie rassemble les valeurs publiées des potentiels d'oxydoréduction et des coefficients d'interaction spécifique du couple Np(VI)/Np(V) en milieu carbonate (tableau 2). Le neptunium au degré d'oxydation 5 en milieu carbonate a fait l'objet d'une étude approfondie au laboratoire d'accueil sur la détermination de la stoechiométrie du complexe par spectrophotométrie [89RIG]. On retiendra de cette recherche que le degré d'oxydation des actinides doit être stable pour pouvoir déterminer la stoechiométrie de ces complexes, en revanche si celui-ci n'est pas stable il est justifié de supposer que la stoechiométrie de leurs complexes est identique à celle d'un autre actinide de même degré d'oxydation, mieux connu. En effet la stoechiométrie des complexes de même degré d'oxydation est généralement identique pour toute la série des actinides, cette analogie n'est pas applicable aux valeurs des potentiels des couples d'oxydoréduction. Ceci a été vérifié pour le Np(VI) en milieu carbonate [89RIG] [92CAP].

Dans ce milieu il existe trois ions complexants : OH^- , CO_3^{2-} , HCO_3^- . La formule générale des complexes de Np(V) est $(MO_2)_p(CO_3)_i(HCO_3)_j(OH)_k^Z$ mais cette formule n'est pas univoque $(HCO_3^- + OH^- \text{ est équivalent à } CO_3^{2-} + H_2O$ par exemple). En fait il a été démontré au laboratoire (bibliographie pour la TDB non encore publiée) que les seules espèces de Np(V) à prendre en compte (tableau 2) sont NpO₂(CO₃)_i¹⁻²ⁱ avec i = 3 et peut-être 2. Par analogie avec l'uranium on supposera dans nos conditions (Na₂CO₃ concentré) que le seul complexe de Np(VI) à prendre en compte est NpO₂(CO₃)₃⁴⁻. Ceci a été vérifié pour U [92GRE] et Pu [87ROB] [89RIG]. Le coefficient d'interaction spécifique, dont nous expliciterons la signification dans le chapitre suivant, a été recalculé récemment par des travaux menés au laboratoire, en milieu NaClO₄.

Tableau 2 : Potentiel d'oxydoréduction du couple Np(VI)/Np(V) en milieu carbonate concentré. Les auteurs marqués * n'ont pas vérifié la valeur du potentiel de jonction pouvant influer sur la valeur des potentiels, par conséquent ces valeurs peuvent être entachées d'erreurs. A partir des valeurs mesurées pour U et Pu, [92CAP] estime par interpolation que l'écart de potentiel entre les couples NpO_2^{2+}/NpO_2^+ et $NpO_2(CO_3)_3^{4-}/NpO_2(CO_3)_3^{5-}$ est de $(15,2\pm1,2)\times59,16mV$. Nous avons calculé la dernière ligne en utilisant la valeur 1162±11mV/ENH [89RIG] pour le premier de ces couples. **Tous les potentiels redox sont en (mV/ENH) sauf ceux suivis de ** (mV/ECS).

Milieu	Méthode	potentiel redox**	référence
0,2<[K ₂ CO ₃]<3M	coulométrie à potentiel contrôlé	440 ± 10	[74SIM]*
1M Na ₂ CO ₃ , pH=11,5	coulométrie à potentiel contrôlé	$460~\pm~20$	[75SIM]*
$1M Na_2CO_3$	voltampérométrie cyclique	221**	[81WES]*
		445 ± 10	[85NEW]*
$2M Na_2 CO_3$	voltampérométrie cyclique	$230 \pm 10^{**}$	[84VAR]*
3M Na ⁺ , 0,1 M HCO ₃ -,ClO ₄ -	voltampérométrie cyclique	496 ± 30	[89RIG]

3. Coefficients d'activité en milieu carbonate de sodium

Les théories de l'interaction spécifique que nous détaillons dans cette partie, sont bien connues du laboratoire d'accueil et ont été validées par de multiples travaux [89RIG], [92CAP]. Nous rappelons brièvement leur principe, car elles sont à la base de tous les calculs effectués par la suite. Pour mieux comprendre leur signification et leur utilisation, il nous a paru intéressant de recalculer la valeur du coefficient d'interaction spécifique du carbonate de sodium. A partir de ce travail le laboratoire d'accueil a poursuivi les calculs d'activité d'eau, des coefficients d'activité.

3.1. Formule de Debye-Hückel

Une molécule polaire ou chargée crée autour d'elle un champ électrique et si une molécule vient dans son voisinage, elle peut subir l'influence de ce champ ; soit parce qu'elle est elle-même chargée, soit par polarisation induite. En prenant en compte les interactions électrostatiques que les ions exercent les uns sur les autres, Debye-Hückel a établi une équation qui permet de calculer le coefficient d'activité d'un ion, i, en fonction de la force ionique, I :

$$lg\gamma_i = -z_i^2 D \tag{3-1}$$

où

$$D = \frac{1}{1 + Ba_i \sqrt{I}}$$

$$I = \frac{1}{2} \sum_{i} z_i^2 m_i \qquad \text{est la force ionique} \qquad (3-2),$$

$$(3-3),$$

 z_i est la charge de l'ion i, m_i la molalité de l'ion i, a_i est un paramètre dimensionnel de l'ion, correspondant à la distance minimale d'approche d'un autre ion, A et Ba_i sont deux paramètres dépendant de la température. A 25°C, le coefficient B = 0,33.10⁻¹⁰ et $a_i = 0,3$ nm et donc Ba_i \approx 1, a est fixé à 0,509.

Le modèle de Debye-Hückel ne fournit des valeurs en bon accord avec les résultats expérimentaux que pour I inférieure à 0,01 mol./kg.

Tous les calculs faits par la suite sont donnés en mol.kg⁻¹. La conversion de molarité, M, en molalité, m, est effectuée au moyen de la formule: $m = M \ 10^{(rM)}$. Les valeurs de r sont déterminées pour chaque milieu.

3.2.2. Théories d'interaction spécifique

3.2.1. TIS (SIT en anglais)

Afin d'étendre le domaine d'application aux solutions plus concentrées, Brönsted a émis l'hypothèse qu'il existait des interactions spécifiques, c'est à dire des interactions de contact, à courte distance, entre ions de charges et de signes opposés, en plus des interactions électrostatiques à longue distance pris en compte dans la formule de Debye-Hückel. Selon ces hypothèses Guggenheim a complété l'expression de Debye-Hückel par l'adjonction d'un terme du deuxième viriel, tenant compte des interactions entre les ions différents.

La TIS (SIT en anglais) est issue du modèle de Brönsted-Guggenheim, les paramètres A et Ba_i dans le terme de Debye-Hückel, sont empiriquement fixés respectivement aux valeurs 0,5091 et 1,5 à 25° C pour minimiser la variation de ε avec la force ionique. Le coefficient d'activité s'écrit alors (3-2 et 3-3) :

$$\lg \gamma_i = -z_i^2 D + \sum_j \varepsilon(i,j) m_j$$
(3-4)

où $\varepsilon(i,j)$ est le coefficient d'interaction spécifique entre les ions i et j de charges opposées.

La TIS suppose que les ε sont indépendants de la force ionique, $\varepsilon(i,j) = \varepsilon(j,i)$ et que $\varepsilon(i,j) = 0$ si i et j sont de charge de même signe ou nulle. ε , A et Ba_i sont indépendants de la force ionique, mais varient en fonction de la température. Les valeurs de ces deux paramètres sont regroupées dans l'*Annexe 3*.

Dans la suite de ce rapport nous utiliserons la terminologie TIS pour désigner cette théorie de l'interaction spécifique.

3.2.3. Formule de Pitzer

L'équation de Pitzer est de la même forme que celle de la TIS, avec en plus un terme du troisième viriel. Le coefficient du deuxième viriel cette fois-ci dépend empiriquement de la force ionique. Le terme de Debye-Hückel est noté $f^{\gamma*}$. La formule de Pitzer est plus précise que la TIS, mais plus difficile à utiliser pour les complexes ayant un faible domaine d'existence. Elle est de la forme:

$$lg\gamma_{i} = z_{i}^{2} f^{\gamma^{*}} + \sum_{j} B_{ij}^{\gamma^{*}} m_{j} + \sum_{j,k} C_{ijk}^{\gamma^{*}} m_{j} m_{k}$$
(3-5)

3.3. Milieu carbonate

Le coefficient d'interaction spécifique du Na₂CO₃, ε (CO₃²⁻,Na⁺), est obtenu en combinant les équations de Pitzer (3-5 *et annexe 1*) et de la TIS (3-4). A partir de l'équation de Pitzer, nous déterminons la valeur du coefficient d'activité. Connaissant la valeur de ce terme, nous le remplaçons dans l'équation de la TIS et en déduisons la valeur de ε (CO₃²⁻,Na⁺).

Dans l'équation de Pitzer les paramètres $\beta^{(0)}$, $\beta^{(1)}$ et C^{Φ} sont connus (déterminés par régression à partir de résultats de mesures). Nous faisons varier la molalité en Na⁺ de 0,1 à 1,5 mol./kg. A chaque m_{Na⁺} on détermine la valeur du coefficient osmotique, Φ (*Annexe 1*), en remplaçant cette valeur dans l'expression de l'activité d'eau (*Annexe 1*) on obtient la valeur de l'activité d'eau. Parallèlement, à partir de l'expression du coefficient d'activité (*Annexe 1*) on détermine le logarithme du coefficient d'activité moyen en fonction de la force ionique. Pour valider la méthode, on peut tracer la variation du $\lg \gamma_{\pm}(I)$ et de $a_{H_2O}(I)$ en fonction de m_{Na}⁺, une étude plus approfondie est menée à la suite de ce travail par le laboratoire d'accueil.

 $\epsilon(CO_3^{2^-}, Na^+)$ est alors déterminé en remplaçant dans l'équation de la TIS (3-4), le lg $\gamma_{\pm}(I)$ déterminé à partir de l'équation de Pitzer. Les calculs effectués pour déterminer $\epsilon(CO_3^{2^-}, Na^+)$ et $\epsilon(HCO_3^-, Na^+)$ sont longs, nous ne donnons que les résultats obtenus (tableau 2). Ils sont satisfaisants aux incertitudes près.

Il est possible de passer d'une théorie à l'autre comme nous venons de le voir. Cependant la théorie de Pitzer qui comporte trois paramètres $\beta^{(0)}$, $\beta^{(1)}$ et C^{Φ} difficilement ajustables pour les actinides, est peu utilisée. Les paramètres ϵ (i,j) de la TIS n'ont pas cet inconvénient ; mais cette formule est moins précise et n'est exploitable que sur un plus petit domaine de I.

4. Méthodologie

4.1. Equilibre d'oxydoréduction

Parmi les actinides à longue durée de vie radioactive, seul le neptunium est bien stable au degré d'oxydation 5 dans un grand domaine de conditions chimiques. La complexation par les ions carbonates se fait alors directement. En milieu concentré, il se forme le complexe limite NpO₂(CO₃)₃⁵⁻, stable qu'à force ionique élevée [89RIG]. La complexation par les carbonates est généralement prépondérante sur l'hydrolyse. Le but de cette partie est de déterminer la valeur des potentiels d'oxydoréduction de l'équilibre NpO₂(CO₃)₃⁴⁻ +e⁻ \Leftrightarrow NpO₂(CO₃)₃⁵⁻ en fonction de la force ionique et de la température, par voltampérométrie cyclique.

Avec cette technique le caractère non réversible du couple d'oxydoréduction se manifeste par un écart croissant des potentiels de pics d'oxydation et de réduction, mais la valeur des potentiels de demi-somme reste constante. On assimile donc le potentiel de demi-somme au potentiel normal apparent E'° et la loi de Nernst est applicable au même titre que pour les systèmes réversibles, vérifiés précédemment au laboratoire d'accueil.

Pour une réaction d'oxydoréduction : $ox + ne^- \Leftrightarrow red$, la loi de Nenrst s'écrit de manière générale:

$$E = E^{\circ} + A(T) lg \frac{a_{ox}}{a_{red}}$$
(4-1)

où a est l'activité de l'espèce oxydante ou réductrice.

4.2. Force ionique

Les potentiels d'oxydoréduction déterminés expérimentalement à toute force ionique sont traités au moyen de la théorie de l'interaction spécifique (§ 3) ce qui permet d'extrapoler, à température standard, les valeurs du potentiel d'oxydoréduction à force ionique nulle et de calculer celle du coefficient d'interaction spécifique. Lorsque le potentiel varie en fonction de la force ionique l'équation (4-1) s'écrit (*Annexe 4*) :

$$E(T^{\circ}, I) = E'^{\circ}(T^{\circ}, 0) + A(T) \lg \frac{m_{ox}}{m_{red}}$$

$$(4-2)$$

Ce calcul est valable à toute température, T et à toute force ionique, I. Il est généralement utilisé à la température T°. Nous faisons apparaître explicitement T, afin d'utiliser les formules établies ici, dans le paragraphe suivant qui traite de l'influence de T.

Quand $m_{ox} = m_{red}$ le potentiel de demi-somme mesuré, $E_{1/2}$, est égal à

$$E_{1/2} = E^{\circ}(T,I) - E_{ref}(T,I)$$

E'°(T°,I) est le potentiel normal apparent à la température standard et dépend de la force ionique :

$$E'^{\circ}(T^{\circ}, I) = E^{\circ}(T^{\circ}, 0) + A(T) lg \frac{\gamma_{ox}}{\gamma_{red}}$$
(4-4)

En appliquant la TIS à $E^{\circ}(T^{\circ}, I)$ on obtient (Annexe 4)

$$E^{\circ}(T^{\circ}, I) = E^{\circ}(T^{\circ}, 0) + A(T) \left(-\Delta z^{2} D(T^{\circ}, I) + \Delta \varepsilon(T^{\circ}) m_{Na^{+}} \right)$$

$$(4-5)$$

avec Δz^2

 $z^2 = z_{ox} - z_{red} = 16 - 25 = -9$ dans notre cas.

 $\Delta \epsilon = \epsilon (ox, Na^+) - \epsilon (red, Na^+)$ puisque ox et red sont des anions dans notre cas

Toutes nos mesures sont faites par rapport à une électrode de Ag/AgCl. Afin de faciliter les comparaisons avec la littérature, nous choisissons de travailler avec des potentiels recalculés par rapport à l'ENH. Nous appliquons la loi de Nernst à l'équilibre

$$AgCl \downarrow +e^{-} \Leftrightarrow Ag \downarrow +Cl^{-}$$
(4-6)

$$E_{\text{ref}} = E_{\text{Ag/AgCl}} + A(T) \lg \frac{1}{a_{\text{Cl}^-}}$$
(4-7)

Et en appliquant la TIS:

$$E_{ref}(T,I) = E_{Ag/AgCl}(T,0) + A(T) \left(D(T,I) - \lg m_{Cl^{-}} - \varepsilon(T) m_{Na^{+}} \right)$$
(4-8)

A la température standard $\varepsilon(T^{\circ}) = \varepsilon(Na^+, Cl^-)(T^{\circ}) = 0,034 \text{ kg.mol.}^{-1}, \text{ et } [85BARD]$

$$E_{Ag/AgCl}(T,0) = 0,23695 - 4,8564.10^{-4} T - 3,4205.10^{-6} T^2 - 5,869.10^{-9} T^3$$
(4-9)

Afin de déterminer E'°(T°,0) et $\Delta \varepsilon$ (T°) nous traçons $\frac{E'°(T°,I)}{A(T)} + \Delta z^2 D(T°,I)$ en fonction de m_{Na}+. La TIS est vérifiée

si cette courbe est une droite. Sa pente est alors $\Delta \epsilon(T^{\circ})$, son ordonnée à l'origine : $\frac{E' \circ (T^{\circ}, 0)}{A(T^{\circ})}$.

4.3. Température

La température est une variable intensive. Nous nous intéressons dans cette partie à l'influence de la température sur la demi-somme des potentiel de pic, E'°(T,I), en particulier sur les potentiels à force ionique nulle, E'°(T,I), et sur les coefficients d'interaction spécifique, $\Delta \varepsilon$ (T), et à sa modélisation. En fonction de la température le potentiel a même expression que (4-5):

$$E'^{\circ}(T,I) = E'^{\circ}(T,0) + A(T) \left(-\Delta z^{2} D(T,I) + \Delta \varepsilon(T) m_{Na^{+}} \right)$$
(4-10)

De la même façon qu'au § 4.2, nous traçons E'°(T,I) en fonction de m_{Na^+} et vérifions la validité de la formule en vérifiant (4-5) que E'°(T,0) et $\Delta\epsilon(T)$ calculés par notre méthode, sont effectivement indépendants de I.

De récentes publications sur le plutonium [95CAP] ont proposé d'exploiter les résultats en reliant E'°(T,I), E'°(T°,I), $\Delta S(T^\circ,I) / F$ et $\Delta Cp(T^\circ,I) / (2 F T^\circ)$ par une expression développée au second ordre :

(4-3)

$$E'^{\circ}(T,I) = E'^{\circ}(T^{\circ},I) + \frac{\Delta S(T^{\circ},I)}{F}(T-T^{\circ}) + \frac{\Delta Cp(T^{\circ},I)}{2FT^{\circ}}(T-T^{\circ})^{2}$$
(4-11)

où S est l'entropie et Cp la capacité calorifique.

Il a été vérifié que le second ordre suffit à modéliser E'°(T,I) mais aussi $\Delta \epsilon(T)$ et D(T,I) en fonction de (T-T°) car la précision des mesures expérimentales ne justifie pas un développement à un ordre supérieur. Les valeurs à T° des fonctions thermodynamiques, $\Delta S(T^\circ,I)$ et $\Delta Cp(T^\circ,I)$, et celles des dérivées du coefficient d'interaction, $\Delta \epsilon'(T)$ et $\Delta \epsilon''(T)$, et du terme de Debye-Hückel, D'(T,I) et D''(T,I), sont obtenues par régression polynomiale. La variation de D est quasiment linéaire en fonction de (T-T°), on s'attend a une évolution similaire des $\Delta \epsilon$.

4.4. Température et force ionique

La combinaison de ces deux paramètres est à l'origine des extensions apportées à la TIS. Le but de cette partie est de montrer l'influence de la température et de la force ionique sur les fonctions thermodynamiques : ΔS et ΔCp . Rappelons brièvement quelques définitions classiques de la thermodynamique.

4.4.1. L'entropie

L'entropie, S, est une fonction d'état, sa variation est toujours la même au cours d'une transformation donnée, quelle que soit la façon dont elle s'effectue, pourvu que les états initial et final soient les mêmes. Afin de relier l'entropie au potentiel, introduisons l'énergie libre de Gibbs, G, appelée aussi enthalpie libre (*Annexe 8*)

$$\left(\frac{\partial G}{\partial T}\right)_{\mathbf{P}} = -\mathbf{S} \tag{4-12}$$

Une réaction d'oxydoréduction : $ox + ne^- \Leftrightarrow$ red s'accompagne d'une variation d'enthalpie libre qui est égale au travail électrique produit, soit :

$$\Delta G = -n F E$$
(4-13)
La relation liant le potentiel redox, E, et l'entropie est obtenue en dérivant (4-13) et en y substituant (4-12) :

$$\left(\frac{\partial E}{\partial T}\right)_{\mathbf{P}} = \frac{\Delta S}{nF}$$
(4-14)

4.4.2. La capacité calorifique

La capacité calorifique à pression constante est la quantité de chaleur qu'il faut fournir au système pour l'échauffer de un degré à pression et composition constantes. Elle est égale à (*Annexe 8*) :

$$Cp = T \left(\frac{\partial S}{\partial T}\right)_{P}$$
(4-15)

La relation liant le potentiel redox et la capacité calorifique est obtenue en substituant (4-14) dans (4-15) :

$$\left(\frac{\partial^2 E}{\partial T^2}\right)_{\mathbf{P}} = \frac{1}{n F} \left(\frac{\partial \Delta S}{\partial T}\right)_{\mathbf{P}} = \frac{\Delta C p}{n F T^{\circ}}$$
(4-16)

Afin de modéliser l'influence simultanée de la température et de la force ionique sur les fonctions thermodynamiques, le laboratoire d'accueil utilise les fonctions d'excès (*Annexe 9*) dont un développement au second ordre s'exprime en fonction des potentiels thermodynamiques S et Cp. On obtient :

$$\Delta S^{ex} = r(\Delta z^2(D(T^\circ, I) + T^\circ D'(T^\circ, I)) - m(\Delta \varepsilon(T^\circ) + T^\circ \Delta \varepsilon'(T^\circ)))$$
(4-17)

$$\Delta C p^{ex} = r T^{\circ} \Big(\Delta z^{2} \Big(2D'(T^{\circ}, I) + T^{\circ} D''(T^{\circ}, I) \Big) - m \Big(2\Delta \varepsilon'(T^{\circ}) + T^{\circ} \Delta \varepsilon''(T^{\circ}) \Big) \Big)$$

$$(4-18)$$

En utilisant le développement limité :

$$X(T,I) \approx \sum_{q \ge 0} \left(X^{\{q\}}(T^{\circ},0) + X^{\{q\}ex}(T^{\circ},I) \right) \frac{x^{q}}{q!}$$
(4-19)

où

 $x = T-T^{\circ}$, $X^{\{q\}}$ est la dérivée d'ordre q, de X par rapport à la température,r=Rln10,R est la constante des gaz parfaits,

et en appliquant (4-19) aux constantes thermodynamiques (4-17 et 4-18), on détermine les expressions suivantes :

$$\Delta S(T^{\circ}, I) = \Delta S(T^{\circ}, 0) + r \left(\Delta z^{2} (D(T^{\circ}, I) + T^{\circ} D'(T^{\circ}, I)) - m \left(\Delta \varepsilon(T^{\circ}) + T^{\circ} \Delta \varepsilon'(T^{\circ}) \right) \right)$$
(4-20)

$$\Delta Cp(T^{\circ}, I) = \Delta Cp(T^{\circ}, 0) + rT^{\circ} \left(\Delta z^{2} \left(2D'(T^{\circ}, I) + T^{\circ}D''(T^{\circ}, I) \right) - m\left(2\Delta \varepsilon'(T^{\circ}) + T^{\circ}\Delta \varepsilon''(T^{\circ}) \right) \right)$$
(4-21)

4.5. Préparation des solutions

4.5.1. Na₂CO₃

Les solutions de Na₂CO₃ sont préparées à partir de carbonate de sodium aux concentrations suivantes : 2 ; 1,5 ; 1,25 ; 1 ; 0,5 ; 0,2 M et sont dosées par HNO₃. Les dosages sont effectués trois fois afin de s'assurer de sa reproductibilité. Les solutions de faible force ionique sont en fait 0,55 et 0,22 M.

4.5.2. Np(V)

Toutes nos mesures ont été effectuées en diluant 800 μ l d'une solution 0,015 M de Np(V) en milieu HClO₄ dans 20 ml des solutions de Na₂CO₃ préparées, soit une concentration en Np(V) de 6.10⁻⁴ M en milieu carbonate.

4.5.3. Electrode de référence

Pour éviter la détérioration de l'électrode de Ag/AgCl dans le milieu carbonate, celle-ci est plongée en permanence dans une allonge remplie d'un mélange NaCl, NaClO₄ de même force ionique que celle du milieu étudié et contenant quelques grains de AgCl. La nature de ce milieu permet de diminuer le potentiel de jonction. La concentration en Cl⁻ est fixée à 0,02 mol./kg. Celle en ClO₄⁻ varie :

I (M)	6	4,5	3,75	3	1,65	0,66
[ClO ₄ ⁻](M)	5,98	4,48	3,73	2,98	1,63	0,64

4.6. Principe de la méthode

L'étude du couple Np(VI)/Np(V) à l'équilibre est réalisée au moyen de la voltampérométrie cyclique, méthode électrochimique bien connue pour l'étude des actinides en milieu carbonate [89RIG] [92CAP]. Cette méthode consiste à étudier les courbes intensité-potentiel obtenues lorsqu'un potentiel variant linéairement en fonction du temps est appliqué à l'électrode de travail. C'est une méthode de micro-électrolyse, c'est à dire ne modifiant pas la composition de la solution. En voltampérométrie cyclique la courbe "retour" est obtenue en inversant le sens de balayage du potentiel à un instant t_{λ} , soit pour un potentiel d'inversion E_{λ} . Elle dépend des phénomènes mis en oeuvre à "l'aller" du fait de la modification de la courbe de diffusion.

4.6.1. Montage électrochimique

Le montage est un montage classique à trois électrodes :

- L'électrode de référence est une électrode de Ag/AgCl Tacussel, fil d'argent recouvert de AgCl, plongée dans un compartiment séparé (contenant un mélange de NaCl, NaClO₄) pour éviter l'action des ions carbonate sur l'argent. Le potentiel de jonction, susceptible d'influer sur la valeur des potentiels de demi-somme, a été déterminé plusieurs fois en mesurant la différence de potentiel entre une électrode de Ag/AgCl, identique, plongée directement dans la solution de carbonate et notre électrode de référence placée dans le compartiment. Les résultats obtenus sont tous inférieurs à 2mV, valeurs dont nous n'avons pas tenu compte lors de la détermination de la demi-somme des potentiels.
- L'électrode de référence est contrôlée au début et à la fin de chaque manipulation, en mesurant la différence de potentiel entre celle-ci et une autre électrode de Ag/AgCl, en les plongeant toutes deux directement dans une solution de NaCl. Nous n'avons jamais observé de différence supérieure à 1,5 mV.
- L'électrode de travail et l'électrode auxiliaire sont 2 fils de platine plongeant directement dans la solution de carbonate.

4.6.2. Appareillage

Les trois électrodes sont reliées à un potentiostat Tacussel de type PRT 40-1X, lui même piloté par un générateur de signaux triangulaires et rectangulaires Tacussel de type GSTP4. Le rôle du potentiostat est de fournir entre la cathode et l'anode une différence de potentiel suffisante pour que lors de la réduction, la différence de potentiel entre la cathode et la référence soit celle de la consigne du GSTP4, ceci quel que soit le courant, au retour, c'est le potentiel de l'anode qui est piloté (il s'agit physiquement de la même électrode : l'électrode de travail qui est alternativement cathode et anode lors du balayage cyclique). En réalité, seules l'électrode de référence et l'électrode de travail sont directement reliées au potentiostat. L'électrode auxiliaire est branchée à l'ampèremètre d'un intégrateur de courant Tacussel de type IG6-N disposé dans le circuit de l'électrode auxiliaire. Le potentiel de l'électrode de travail est lu sur un millivoltmètre

Figure 1 : Influence de la vitesse de balayage sur les voltampérogrammes.photocopie

Tacussel. La table traçante Sefram de type TGV64 est reliée d'une part en X au potentiostat pour mesurer le potentiel et d'autre part en Y, à l'intégrateur pour mesurer le courant.

5. Résultats

5.1. Vitesse de balayage

Pour un système réversible en voltampérométrie cyclique, les potentiels de pic sont indépendants de la vitesse de balayage, l'écart entre les potentiels de pic est égal à 59 mV, le rapport de l'intensité du pic de réduction sur celui d'oxydation est égale à 1 et l'intensité de pic, i_p , varie linéairement avec $v^{\frac{1}{2}}$. Pour un système irréversible, i_p varie aussi linéairement en fonction de $v^{\frac{1}{2}}$; mais les potentiels de pics varient en fonction de la vitesse de balayage, l'écart de potentiel entre les deux potentiels de pic augmente. Dans le but de confirmer les études faites sur le Pu à savoir : utilisation de la loi de Nernst pour un système proche de la réversibilité [92CAP], nous avons fait varier la vitesse de balayage pour chacune des solutions étudiées à la température standard. A une vitesse supérieure à 200 mV/s les voltampérogrammes sont déformés en raison de la limitation de la réponse de la table traçante. Nous avons suffisamment de points expérimentaux pour limiter l'étude à cette vitesse.

Le voltampérogramme (*figure 1*) nous montre qu'en fonction de la vitesse de balayage, le potentiel d'oxydation augmente, le potentiel de réduction diminue, soit un écart croissant entre les deux potentiels. Cependant la valeur de la demi-somme des potentiels de pic reste constante. La *figure 2* et les *Annexes 2* nous permettent de vérifier la linéarité de $i_p = f(v_{1/2})$. Quelques écarts sont à noter aux vitesses les plus élevées en raison des imprécisions de mesures des potentiels, engendrées par la forme plus aplatie des pics. D'après toutes ces observations il semblerait que, comme le **Figure 2 : Influence de la vitesse de balayage sur le courant de pic**, i_p (noté ip sur la figure). On vérifie la linéarité de ip=f(\sqrt{v}). ip est ici le pic d'oxydation. T = 25°C, les points expérimentaux sont ceux de l'*annexe 2*, v1/2 (mV/s)^1/2 noté sur la figure est \sqrt{v} où v est la vitesse de balayage en mV/s. Les chiffres sur la figure sont les pentes en mc/V. vitorapetus

plutonium et l'uranium, le système étudié ne soit pas totalement réversible. Ces conclusions confirment la similitude des comportements chimiques de l'uranium, du neptunium et du plutonium. Nous admettrons donc que, comme pour le plutonium et l'uranium, la valeur de la demi-somme des potentiels de pic est une bonne approximation du potentiel normal apparent du neptunium.

Nous avons choisi de tracer les voltampérogrammes à 20 mV/s ou 30 mV/s, valeurs auxquelles la forme des pics est la plus précise.

5.2. Potentiel

On effectue un balayage entre 0 et 500mV. Les pics d'oxydation sont bien définis, en revanche les pics de réduction sont systématiquement plus aplatis. Les potentiels de pics sont déterminés à 5mV près. Pour chaque température deux voltampérogrammes sont tracés et nous pouvons considérer qu'ils sont reproductibles. Par contre à 25°C de plus amples mesures ont été effectuées à des intervalles de temps différents, il apparaît parfois des écarts supérieurs à 5mV qui peuvent être attribués au fait que l'équilibre de température n'était pas atteint. Pour une concentration en Na₂CO₃ de 1M et à 25°C, par exemple, les potentiels des pics d'oxydation et de réduction sont écartés de 94mV. Dans ces conditions d'étude la valeur de la demi-somme des potentiels de pic est égale à 173mV par rapport à l'électrode de référence, soit 504 \pm 10 mV/ESH.

5.3. Force ionique

E'°(T°,0), et $\Delta \epsilon$ (T°) par régression linéaire de l'expression $\frac{E' \circ (T^\circ, I)}{A(T)} - 9 D(T^\circ, I)$ en fonction de m_{Na⁺}. La droite

obtenue de pente $\Delta\epsilon(T^{\circ})$ et d'ordonnée à l'origine E'°(T°,0) est en accord satisfaisant avec la courbe théorique calculée à partir de l'équation de la TIS (4-5). Les écarts type calculés sur la pente, $\Delta\epsilon(T^{\circ})$, et sur l'ordonnée à l'origine, E'°(T°,0), ne sont pas très élevés. La précision de ces valeurs est convenable. Les valeurs obtenues sont (où l'incertitude est $\pm 1,5\sigma$):

Figure 3 : Influence de la température sur les voltampérogrammes.photecopie

Nous présentons sur la *figure 4* la courbe obtenue. Dans une deuxième représentation, on trace directement $E(T^{\circ},I)$ en fonction de $m_{Na^{+}}$ Connaissant E'°(T°,0), $\Delta\epsilon$ (T°), on superpose aux points expérimentaux la courbe théorique calculée par la TIS (*figure 4*). La courbe permet de visualiser la forte variation de $E(T^{\circ},I)$ aux faibles forces ioniques et la quasilinéarité à partir de 1 mol.kg⁻¹. A faible force ionique $-\Delta z^2 D(T^{\circ},I)$ est le terme prépondérant. Le terme de Debye-Hückel, $D(T^{\circ},I)$, est fonction de la racine carrée de la force ionique et $-\Delta z^2$ est positif, d'où une allure croissante proche de la fonction racine carrée. Il est à noter que $\Delta\epsilon$ n'a pratiquement pas d'influence sur l'allure de la courbe aux très faibles forces ioniques. Une augmentation de force ionique tend à stabiliser le complexe du Np(V) qui est le plus chargé. Tous les potentiels mesurés en milieu 2 M sont systématiquement supérieurs à la valeur du modèle, cet écart reste inférieur aux incertitudes.

5.4. Température

Nous avons fait varier la température de 25°C à 60°C, puis de 5°C à 25°C. Pour extrapoler E'°(T,0) et $\Delta\epsilon$ (T) nous traçons les mêmes courbes que dans le paragraphe précédent. Les variations sont comparables à celles observées à la température standard. Pour exemple nous présentons sur les *figures 4* les résultats obtenus à 5°C, 25°C et 45°C et rassemblons les valeurs théoriques de E'°(T,0) et $\Delta\epsilon$ (T) dans le *tableau 3b* et l'*annexe 7*. A chaque force ionique, une représentation graphique est effectuée pour observer l'influence de la température sur les potentiels redox. La *figure 5* montre que les courbes représentatives des variations de E'°(T,0) et E'°(T,0) diminuent en fonction de la température. Le

Np(V) est déstabilisé par une augmentation de la température. Les deux courbes sont presque des droites, on constate qu'elles sont quasiment parallèles : les pentes $\Delta S(I)$ ont des valeurs proches mais différentes.

Etudions à présent la variation de $\Delta \epsilon(T)$ en fonction de (T-T°) dans l'optique de déterminer $\Delta \epsilon'(T)$ (*Annexe* 7). La courbe (*Annexe* 7) diminue pratiquement linéairement en fonction de (T-T°). L'écart à la linéarité traduit l'influence de $\Delta \epsilon''(T°)$. Sa contribution est faible mais non négligeable. La valeur de $\Delta \epsilon(T°)$ calculée ici, $0,18 \pm 0,05$ kg.mol.⁻¹, est un peu plus élevée que celle mesurée directement à 25°C (§ 5.3), néanmoins en prenant en compte les incertitudes, les résultats sont cohérents. Le terme de Debye-Hückel, D(T,I), varie pratiquement linéairement en fonction de (T-T°). La contribution du terme en D''(T°,I) est plus faible que celle en $\Delta \epsilon''(T°)$, la courbe (*annexe 3*) est pratiquement linéaire. Ces paramètres seront utiles pour la suite des calculs.

Dans la méthodologie nous avons vu (équation 4-11) qu'il était possible de relier E'°(T,I), E'°(T°,I), Δ S(T°,I) / F et Δ Cp(T°,I) / (2 F T°), pour cela nous traçons (*Figures 5*) E'°(T,I) en fonction de (T-T°).

Figure 4 : Extrapolation à force ionique nulle, du potentiel d'oxydoréduction du couple Np(VI)/Np(V) mesuré en milieu Na₂CO₃. Le potentiel mesuré, E'° (mV/ENH), est extrapolé à I=0 selon la formule (4-10) de la TIS. Les droites de régression, sont tracées avec les valeurs indiquées dans la légende : E'° à I=0 (mV/ENH) et $\Delta\epsilon$ (kg/mol.). A=R T ln(10) / F, A=59,16 mV à 25°C, mNa est la molalité de Na⁺. D est le terme de Debye-Hückel. GRAFE-TXLS

Figure 5 : Influence de la température sur le potentiel d'oxydoréduction du couple Np(VI)/Np(V). Les courbes (*équation 4-11*) sont des paraboles tracées avec les paramètres indiqués dans la légende : ordonnée à l'origine, E'°(T°,I) en mV/ENH ; pente à T°=25°C, $\Delta S(T^\circ,I) / F$ en mV/°C ; et courbure à T°, $\Delta Cp(T^\circ,I) / (2 F T^\circ)$ en mV/°C². Ils sont obtenus par régression à partir du potentiel mesuré, E'° (mV/ENH). Le décalage des courbes est dû à l'influence de la force ionique sur le potentiel.^{240MXLS}

Tableau 3: Exemple de traitement de l'influence de la température sur le potentiel d'oxydoréduction. Les potentiels sont extrapolés à I = 0 en appliquant (*figure 4*) aux potentiels mesurés la TIS à chaque température. A partir de ces valeurs (*tableau 3a*), on déduit (*figure 5*) les variations d'entropie, Δ S, et de capacité calorifique, Δ Cp, de l'équilibre d'oxydoréduction, par régression polynomiale du second ordre (*tableau 3b*). E(T-0)XLS

	Tab	leau 3a :	: données	Tableau 3b : valeurs obtenues par régression
Т	$(T-T^{\circ})$	$(T-T^{\circ})^{2}$	² E'°(T,0)	E'°(25°C,0) ΔS(25°C,0)/F ΔCp(25°C,0)/2FT°
(°C)	(°C)	(°C) ²	(mV/ENH)	(mV/ENH) (mV/K) $(mV/K)^2$
5	-20	400	375	336 ± 9.4 -1.97 ± 0.27 0.006 ± 0.012
15	-10	100	358	
25	0	0	341	
35	10	100	319	
45	20	400	294	
55	30	900	269	
60	35	1225	285	

5.5. Force ionique et température

Dans cette partie nous étudions les variations des fonctions thermodynamiques ΔS et ΔCp en fonction de la molalité de Na⁺. Ces fonctions font ensuite l'objet d'une étude comparative avec les résultats équivalents obtenus pour le plutonium et l'uranium. Pour ΔS , la courbe théorique (*d'équation 4-20*) semble rendre compte de façon satisfaisante des résultats expérimentaux (*figure 6*). La courbe augmente jusqu'à 0,4 mol.kg⁻¹ à cause du terme Δz^2 (D(T°,I) + T° D'(T°,I)) (avec $\Delta z^2 = 9$) puis diminue pratiquement linéairement lorsque - m($\Delta \varepsilon$ (T°) + T° $\Delta \varepsilon$ '(T°)) devient prépondérant.

La détermination de Δ Cp est déduite de la dérivée seconde de nos mesures ce qui explique sa faible précision : son influence est du même ordre que les incertitudes ce qui limite l'exploitation de ce résultat. En ce sens, la courbe théorique rend compte des résultats expérimentaux (*figures 7*) ; mais ce.n'est pas une validation de la formule (4-21) utilisée.

6. Discussion

6.1. Valeurs du potentiel

Nous regroupons dans le *tableau 4* les valeurs des potentiels redox de la littérature et celles que nous avons obtenues lors de ce stage. Notre valeur à 1 M Na₂CO₃ est plus élevée de 44 à 59 mV que celles de la littérature, à 2 M Na₂CO₃ elle est plus élevée de 47 mV. Ces écarts dépassent de 14 à 39 mV les domaines d'incertitude, ce qui pourrait éventuellement s'expliquer par les potentiels de jonction de ces valeurs publiées ; mais d'autres explications pourraient être possibles : ce point reste à approfondir. Il semble que, compte tenu des corrections de force ionique, notre mesure soit également supérieure à celle obtenue précédemment au laboratoire [89RIG] pour laquelle le potentiel de jonction ne devrait pas pouvoir être invoqué, il s'agit toutefois d'une seule mesure donnée avec une incertitude relativement importante car la reproductibilité n'était pas satisfaisante, la dissociation du complexe limite de Np(V) n'était peut-être pas négligeable dans ce travail. Nos incertitudes sont calculées à partir de 1,5 σ , (l'écart type est déterminé sur la

Figure 6 : Influence de la force ionique sur la variation d'entropie, ΔS (noté DS sur la figure) en J.K⁻¹ mol.⁻¹, du couple Np(VI)/Np(V) en milieu Na₂CO₃. L'entropie est déduite (*figure 5*) du terme du premier ordre (pente de E(T) à T° d'une régression polynomiale (*4-11*) sur les mesures de potentiel. La courbe représente la TIS pour l'entropie (*4-20*). L'influence de la force ionique sur ΔS dépend du terme empirique r($\Delta \varepsilon$ (T°)+T° $\Delta \varepsilon$ '(T°)) (J.K⁻¹) dont la valeur, indiquée sur la figure, est calculée par régression polynomiale du second degré sur $\Delta \varepsilon$ (annexe 7). La molalité de Na⁺, m_{Na}⁺, est noté mNa⁺ sur la figure. Les points expérimentaux sont ceux du tableau ci-dessous._{DSXLS}

Figure 7 : Influence de la force ionique sur la variation de capacité calorifique, Δ Cp (noté DCp sur la figure) en J.K⁻².mol.⁻¹, du couple Np(VI)/Np(V) en milieu Na₂CO₃.. La capacité calorifique est déduite (*figure 5*) du terme du second ordre d'une régression polynomiale (4-11) sur les mesures de potentiel. La courbe représente la TIS pour la capacité calorifique (4-21). L'influence de la force ionique sur Δ Cp dépend du terme empirique r($2\Delta\epsilon'(T^\circ)+T^\circ\Delta\epsilon''(T^\circ)$) (J.K⁻²) dont la valeur, indiquée sur la figure, est calculée par régression polynomiale du second degré sur $\Delta\epsilon$ (annexe 7). La molalité de Na⁺, m_{Na⁺}, est noté mNa⁺ sur la figure. Les points expérimentaux sont ceux du tableau ci-dessous.

régression linéaire) à cette valeur on peut ajouter la variation du potentiel de l'électrode de référence (<2mV) et celle du potentiel de jonction (<1,5mV). Le rapport des coefficients de diffusion des espèces oxydantes et réductrices est proche de 1 mV [89RIG]. Un petit écart à la réversibilité pourrait avoir une influence de quelques millivolts sur la valeur du potentiel.

6.2. Force ionique

En milieu Na₂CO₃ 1 M (m_{Na}⁺ 2 mol./kg), les points expérimentaux s'écartent très légèrement de la droite de régression de la TIS (*figure 4*). A faible force ionique NpO₂(CO₃)₃⁵⁻ pourrait se dissocier en NpO₂(CO₃)₂³⁻. Afin de vérifier la validité de cette dernière hypothèse nous avons déterminé l'influence de la présence de ce complexe sur la valeur du potentiel d'oxydoréduction à faible force ionique (*Annexe 10*). La correction à apporter au potentiel est égale à 5mV à 25°C, cette valeur va dans le bon sens, elle est faible mais non négligeable ; à ce titre on superpose les droites représentatives des variations de $\frac{E^{\circ'}(T,I)}{A(T)} + \Delta z^2 D(T,I)$ en fonction de m_{Na}⁺ (*Annexe 10*). La correction de potentiel

ne donne pas de résultats suffisamment significatifs pour élargir l'étude aux autres températures.

Tableau 4 : Potentiel d'oxydoréduction du couple Np(VI)/Np(V) en milieu carbonate concentré										
Milieu	Méthode	potentiel redox	référence							
0,2 <[K ₂ CO ₃] < 3M	coulométrie à potentiel contrôlé	0,44 ± 0,01 V/ENH	[74SIM]							
0,22 M Na ₂ CO ₃	voltampérométrie cyclique	0,436 ± 0,008 V/ENH	ce travail							
0,55 M Na ₂ CO ₃	voltampérométrie cyclique	0,469 ± 0,008 V/ENH	ce travail							
1 M Na ₂ CO ₃ pH=11,5	coulométrie à potentiel contrôlé	0,46 ± 0,02 V/ENH	[75SIM]							
$1 \text{ M Na}_2 \text{CO}_3$	voltampérométrie cyclique	0,221 V/ECS	[81WES]							
$1 \text{ M Na}_2 \text{CO}_3$	voltampérométrie cyclique	0,445 ± 0,01 V/ENH	[85NEW]							
1 M Na ₂ CO ₃	voltampérométrie cyclique	$0,50_4 \pm 0,010 \text{ V/ENH}$	ce travail							
1,25 M Na ₂ CO ₃	voltampérométrie cyclique	$0,50_2 \pm 0,012 \text{ V/ENH}$	ce travail							
$1,5 \text{ M Na}_2 \text{CO}_3$	voltampérométrie cyclique	$0,50_{4}^{-} \pm 0,010 \text{ V/ENH}$	ce travail							
2 M Na ₂ CO ₃	voltampérométrie cyclique	0,23 ± 0,01 V/ECS	[84VAR]							
		0,47 ± 0,01 V/ENH								
2 M Na ₂ CO ₃	voltampérométrie cyclique	0,51 ₇ ± 0,010 V/ENH	ce travail							
3 M Na ⁺ , 1 M HCO ₃ ⁻ , ClO ₄ ⁻	voltampérométrie cyclique	0,49 ₆ ± 0,03 V/ENH	[89RIG]							

A force ionique élevée, le faible écart à la TIS pourrait être dû à la formation de paires d'ions entre les complexes limites du Np et Na⁺. $\Delta\epsilon$ est plus élevé pour l'uranium que pour le neptunium (*tableau 1*) : l'augmentation de la force ionique stabilise plus U(V).

6.3. Température

Dans ce travail nous avons déterminé toutes nos valeurs par rapport à l'ENH. L'équilibre de réduction à l'électrode à hydrogène s'écrit :

$$Np(VI) + \frac{1}{2} H_2 \Leftrightarrow Np(V) + H^+$$
(6-1)

Pour cette réaction

$$\Delta S = S_{Np(V)} + S_{H^{+}} S_{Np(VI)} - \frac{1}{2} S_{H_{2}}$$
(6-2)

$$(S_{H^{+}})^{\circ} = 0 \qquad \text{dans les conditions standard,}$$

$$(S_{H_{2}})^{\circ} = 130,680 \text{ J.K}^{-1}.\text{mol.}^{-1} \qquad [92GRE],$$

$$: \qquad S^{\circ}_{Np(V)} = S^{\circ}_{Np(VI)} - 125 \pm 30 \text{ J.K}^{-1}.\text{mol.}^{-1}.$$

par suite :

La variation d'entropie est négative pour les trois éléments (*tableau 1*), elle semble décroître avec le numéro atomique. Une augmentation de température déstabilise le degré d'oxydation 5. La valeur de variation de capacité calorifique déduite des variations de potentiel d'oxydoréduction avec la température n'est pas significative : elle est supérieure à l'incertitude.

6.3. Température et force ionique

Les incertitudes sur E^o(T^o,0) ont les mêmes origines que celles de E^o(T,I); mais il faut y ajouter l'incertitude d'extrapolation. Celles sur $\Delta \epsilon$ "(T^o) sont supérieures à cent pour cent. Les variations d'un élément à l'autre ne sont pas supérieures aux incertitudes pour $\Delta \epsilon$ '(T^o).

7. Conclusion

Dans le cadre de ce stage, nous avons mesuré, par voltampérométrie cyclique, les potentiels d'oxydoréduction du couple Np(VI)/Np(V) à différentes forces ioniques et à différentes températures, afin d'extrapoler E'° à force ionique nulle et à toute température par le biais de la théorie de l'interaction spécifique. Nos valeurs de potentiel d'oxydoréduction à force ionique 1 M et 2 M sont supérieures à celles de la littérature. Les auteurs ne semblent pas tenir compte des éventuelles influences du potentiel de jonction et de l'électrode de référence. Les résultats précédemment obtenus sur le plutonium et l'uranium [89RIG] [92CAP] et ceux du neptunium montrent et confirment, qu'en milieu carbonate concentré, la voltampérométrie cyclique est une méthode précise et adaptée à l'étude des actinides dont le comportement est proche de la réversibilité. Les variations de potentiel en fonction de la force ionique sont dues essentiellement au terme de Debye-Hückel, $\Delta z^2 D(T,I)$. Ces courbes sont comparables à celles de l'uranium et du plutonium. En outre, la courbe représentative de $\frac{E' \circ (T^\circ, I)}{A(T)} + \Delta z^2 D(T^\circ, I)$ en fonction de la molalité de Na⁺ est en

accord avec la courbe théorique de la TIS. Ces résultats confirment le choix de cette théorie pour modéliser l'influence

du milieu sur les équilibres chimiques des actinides dans les milieux carbonate concentrés, et pour étudier leur géochimie.

En fonction de la température les potentiels d'oxydoréduction diminuent, le complexe du Np(V) est déstabilisé. Un développement limité au second ordre en fonction de (T-T°) permet de relier directement les potentiels et les constantes thermodynamiques Δ S et Δ Cp. Ces fonctions sont utiles pour prévoir l'influence de la température sur le comportement des actinides dans les eaux souterraines, principal vecteur potentiel de la radioactivité vers la géosphère. Aucune valeur de ces constantes n'ayant été publiée pour le Np(VI), nous comparons nos valeurs à celles déterminées pour le U et Pu. Dans les conditions standard on remarque que la variation d'entropie est négative pour les couples U(VI)/U(V), Np(VI)/Np(V) et Pu(VI)/Pu(V). U(V), Np(V) et Pu(V) sont déstabilisés quand la température augmente, mais stabilisés quand la force ionique augmente. D'où vraisemblablement, l'apparition à force ionique élevée de paires d'ions entre MO₂(CO₃)₃⁵⁻ (M = Np, Pu) et Na⁺. Mais lorsque la température augmente, à force ionique élevée M(V) est moins stable.

Ce stage a permis de contribuer à établir une banque de données thermodynamiques pour le couple Np(VI)/Np(V) nécessaire dans l'étude des stockages des déchets nucléaires.

Bibliographie

- [74SIM] Simakin G., Volkov Y., Visyascheva G., Kapsulov... Sov. Radiochem. 16, 838 (1974)
- [75SIM] Simakin G., Eletrokhim. 11, 1026 (1975)
- [81WES] Wester D., Sullivan J., J. Inorg. Nuclear Chem., 2919 (1981)
- [84VAR] Varlashkin P., Hobart D., Begun G., Peterson J., Radiochim. Acta 35, 91 (1984)
- [85BAR] Bard J., Parsons R., Jordan J., Standard Potentials in Aqueous Solution. Dekker ed. (1985)
- [85NEW] Newton T., Sullivan J., Handbook of the Physics and Chemistry of the Actinides, Freeman et Keller ed. (1985)
- [87RIG] Riglet C., Vitorge P., Grenthe I., Inorg. Chim. Acta, 133, 323 (1987)
- [87ROB] Robouch P., Thèse Université Louis Pasteur (Strasbourg) 13/11/87 ou CEA-R-5473
- [89RIG] Riglet C., thèse Paris 6, 17/03/89, ou CEA-R-5535 (1990)
- [92CAP] Capdevila H., thèse Paris-sud, 5/6/92 ou CEA-R-5643 (1992)
- [92GRE] Grenthe I., Fuger J., Lemire R., Muller A., Nguyen-Trung C., Wanner H., Chemical Thermodynamics of Uranium NEA-TDB et Elsevier ed. (1992)
- [95CAP] Capdevila H., Vitorge P., Redox Potentials of PuO₂²⁺/PuO₂⁺ and Pu⁴⁺/Pu³⁺ at different ionic strengths and temperatures. Entropy and heat capacity. Accepté pour publication dans Radiochim. Acta

Tableau A2 : Influence de la vitesse de balayage sur les potentiels de pic en mV par rapport à notre électrode de référence (voir *annexe 4*), v est la vitesse de balayage (mV/s), ΔE =Epox-Epred, m_{1/2} est σ sont la moyenne es l'écart type de E_{1/2}=(Epox+Epred)/2, T = 25°C, la concentration en Na₂CO₃ est indiqué au dessus de chaque sous-tableau. vitval2.xLS

Annexes

- >

A1. Formule de Pitzer

Coefficient d'activité :

$$\ln \gamma_{-}^{+} = |z_{1}z_{2}|f^{\gamma} + \left(\frac{2\nu_{1}\nu_{2}}{\nu}\right)B_{MX}^{\gamma} m + \left(2\frac{(\nu_{1}\nu_{2})^{\frac{3}{2}}}{\nu}\right)C_{MX}^{\gamma} m$$
(A1-1)

Np(VI)/Np(V) en milieu carbonate concentré.

Coefficient osmotique :

$$\Phi - 1 = \left| z_1 z_2 \right| f^{\Phi} + \left(2 \frac{\nu_1 \nu_2}{\nu} \right) B^{\Phi}_{MX} m + \left(2 \frac{\left(\nu_1 \nu_2 \right)^{\frac{3}{2}}}{\nu} \right) C^{\Phi}_{MX} m^2$$
(A2-2)

Activité d'eau :

$$\ln a_{\rm H_2O} = -\frac{M_{\rm H_2O}}{1000} \, v \, m \, \Phi$$

avec

Force ionique

Terme de Debye-Hückel généralisé

$$\begin{split} \beta &= \left| \frac{1}{2} z_1 z_2 \right|^{\frac{1}{2}} \\ I &= \frac{1}{2} \sum_{i} m_i \ z_i^2 = \beta^2 \ m \\ f^{\gamma} &= -0.392 \left(\frac{x}{(1+1,2\ x)} + \left(\frac{2}{1,2} \right) \ln(1+1,2\ x) \right) \\ B^{\gamma}_{MX} &= 2\ \beta^{(0)} + 2\ \beta^{(1)} \left(1 - \left(1 + 2\ x - 2\ x^2 \right) \exp(-2x) \right) \frac{1}{4\ x^2} \\ C^{\gamma}_{MX} &= \left(\frac{3}{2} \right) C^{\Phi}_{MX} \\ f^{\Phi} &= -0.392 \left(\frac{x}{(1+1,2\ x)} \right) \\ B^{\Phi} &= \beta^{(0)} + \beta^{(1)} \exp(-2x) \end{split}$$

 $\beta^{(0)},\beta^{(1)},C^{\Phi}_{MX}\,$ sont tabulés par Pitzer pour de nombreux électrolytes.

A2. Vitesse de balayage

Tableau A2.a : Influence de la vitesse de balayage sur le courant de pic (µA) vITVAL.XLS

						1 V /
v (mV/s)	$v^{1/2}$	0,55	1	1,25	2	$Na_2CO_3(M)$
2	1,41				5,8	
5	2,23		4,5		8,8	
10	3,16	7,5		5,9		
30	5,48	12	10,4	9,7	19	
50	7,07	15,4			23,6	
60	7,74		14,6	13		
100	10	20,2	17,6	16,8		
150	12,24	24,4	20	20,4		
200	14,14	26,4	25,2	20,4		

1DEA.DOC, le 16/01/95 10:34

(A3-3)

Tableau A3 : Paramètres du terme de Debye-Hückel et de la loi de Nernst en fonction de la température. $D(I,T) = \frac{a\sqrt{I}}{1+b a_i \sqrt{I}}, A = \frac{R T}{F} ln(10) = 59,1597 \frac{T}{298,15} mV, a \text{ est en } (kg/mol)^{1/2} \text{ et en b } a_i (kg/mol)^{1/2}.$ La température est T (K) ou t (°C). D' et D" sont les valeurs à 25°C, des dérivées de D par rapport à la température. GRAFD.ALS

	1 M			1 M			0,55 M		
v	Epox	Epred	ΔE	Epred	Epox	ΔΕ	Epred	Epox	ΔE
5	210	134	76						
10				218	122	96	180	90	90
30	222	120	102	232	110	122	192	84	108
50							200	72	128
60	230	110	120	246	96	150			146
100	234	110	124	260	82	178	210	64	166
150	244	110	134	274	70	204	222	56	176
200	244	110	134	274	74	200	230	54	
$m_{1/2} \pm \sigma$	173,2	± 3,1		171,5	± 1,4		137,8	± 2,5	

A3. Paramètres physiques en fonction de la température

t	а	(b a _i)	Ι	D	D'	D"	А
5	0,4913	1,4867	0,60	0,19	0,0002869	1,386E-06	55,19
10	0,4976	1,4899	1,70	0,22	0,0003332	1,54E-06	56,18
15	0,5012	1,4931	3,00	0,24	0,0003587	2,006E-06	57,17
25	0,5091	1,5	3,80	0,25	0,000367	2,055E-06	59,16
35	0,5182	1,5073	4,60	0,26	0,0003589	3,67E-06	61,14
45	0,5282	1,5151	6,20	0,27	0,0003688	2,95E-06	63,13
55	0,5392	1,5233					65,11
60	0,545	1,5274					66,1

A4. Formule de la TIS

Lors d'une réaction d'oxydoréduction : $Ox + n e^- \Leftrightarrow Red$, le potentiel rédox est donné par la relation de Nernst:

$$E(T,I) = E^{\circ}(T,I) + \frac{A(T)}{n} lg \frac{a_{ox}}{a_{red}}$$
$$= E^{\circ}(T,I) + \frac{A(T)}{n} lg \frac{m_{ox}\gamma_{ox}}{m_{red}\gamma_{red}}$$
$$= E^{\circ}(T,I) + \frac{A(T)}{n} lg \frac{m_{ox}}{m_{red}}$$

où a, m, γ sont respectivement l'activité, la molalité, le coefficient d'activité de l'espèce oxydante ou réductrice E'° le potentiel normal "apparent" dépendant de la force ionique et de la température s'exprime par :

$$E^{\circ}(T,I) = E^{\circ}(T,I) + \frac{A(T)}{n} lg \frac{\gamma_{ox}}{\gamma_{red}}$$

L'activité d'un ion i est lié à la molalité mi par la relation classique:

$$a_i = \gamma_i m_i$$

En appliquant au potentiel E'°(T,I) la TIS on obtient la relation suivante pour n = 1:

$$E^{\circ}(T,I) = E^{\circ}(T,0) + (-\Delta z^2 D(T,I) + \Delta \varepsilon(T) m)$$

avec
$$\Delta z^2 = z_{ov}^2 - z_{red}^2 = -9$$

Dans nos solutions toutes les espèces électroactives sont des anions, la seule espèce cationique est Na⁺, par conséquent

$$\begin{array}{ll} m & = m_{Na^+} \\ et & \Delta\epsilon & = \epsilon(ox,Na^+) - \epsilon(red,Na^+) \end{array}$$

A5. E'° et $\Delta \varepsilon$

Exe	Exemple de traitement des résultats en fonction de T, à I constante.												
Les va	aleurs er	n italiqu	e sont er	ntrées da	ans le t	ableur (EXCEL,	fichier 1	M.XLS)	. Toutes l	es autre	s sont ca	lculées
avec	les form	ules do	nnées au	dessus	de la c	olonne.	Ces form	nules sor	nt obtenue	es par cop	oier-		
coller	puis tra	nsforma	ation en o	caractèr	e alpha	anumério	que ce q	ui les ren	d peu lisi	ble, mais	facilite	le	
contrôle. Les valeurs en dessous de a et b sont les sorties de la régression linéaire d'EXCEL sur T et E°.													
Il	$II 3 M [Na+] 3 M \\ Np(V) 6E-4M + Na2CO3 1M$												
I 3,09 mol/kg mNa+ 3,512 mol/kg 548,386700583818+-1,8232336468744*T													
			mCl-	0,02	mol/kg	$\frac{1}{2}$ 0	.034+0.0	00037*(]	[-25)-0.0	000062*(T-25)^2	2	
	Ę	1/2+E°/	Ag-A(T)	*(LOG	(0,02)	-D(T,I)+	ŀe(Na,0	CI)*3,51	1731107	'88941)			
		(8.3144	126*(T+	-273.15)*LN(10)/9648	35.30929	9)*1000					
3695-(),000485	5643*T·	-0,00000	34205*	T^2-0	,000000	005869*	*T^3)*10	000				
		(Ep	red+Epo	x)/2		a*RA	CINE(I)/(1+Baj	*RACINI	E(I))			
Т	Epred	Epox	E1/2	E°Ag	A(T)	a	Baj	D(T,I)	e(Na,Cl)	E'°	v	b	a
$^{\circ}C$	mV/Ag	n mV/Ag	mV/Ag	mV	mV	kg/mol	kg/mol			mV	mV		
	0	0	0			0	0						
5	252	150	201	234	55,2	0,491	1,487	0,239	0,0241	537,72	539,3	-1,823	548,4
5	250	150	200	234,4	55,2	0,491	1,487	0,239	0,0241	536,72	539,3	0,026	0,938
15	236	138	187	228,9	57,2	0,501	1,493	0,243	0,0297	520,95	521	0,997	1,872
15	232	138	185	228,9	57,2	0,501	1,493	0,243	0,0297	518,95	521	5040	16
25	220	126	173	222,6	59,2	0,509	1,5	0,246	0,034	503,58	502,8	17655	56,05
25	216	132	174	222,6	59,2	0,509	1,5	0,246	0,034	504,58	502,8		
25	220	130	175	222,6	59,2	0,509	1,5	0,246	0,034	505,58	502,8		
25	216	128	172	222,6	59,2	0,509	1,5	0,246	0,034	502,58	502,8		
25	214	134	174	222,6	59,2	0,509	1,5	0,246	0,034	504,58	502,8		
25	214	130	172	222,6	59,2	0,509	1,5	0,246	0,034	502,58	502,8		
35	210	114	162	215,5	61,1	0,518	1,507	0,25	0,0371	488,69	484,6		
35	200	118	159	215,5	61,1	0,518	1,507	0,25	0,0371	485,69	484,6		
45	190	98	144	207,6	63,1	0,528	1,515	0,253	0,0389	466,26	466,3		
45	182	102	142	207,6	63,1	0,528	1,515	0,253	0,0389	464,26	466,3		
55	172	86	129	198,9	65,1	0,539	1,523	0,258	0,0395	446,28	448,1		
55	170	92	131	198,9	65,1	0,539	1,523	0,258	0,0395	448,28	448,1		
60	164	82	123	194,2	66,1	0,545	1,527	0,26	0,0394	437,59	439		
60	164	84	124	194,2	66,1	0,545	1,527	0,26	0,0394	438,59	439		
													

A6. Résultats expérimentaux

Tableau A6 : Résultats expérimentaux des potentiels sont en mV/ENH à différentes températures (1° ligne), T (°C), et force ionique en milieu Na_2CO_3 . La concentration en Na^+ , m (mol./kg) est dans la 1° colonne. E(T-I), SLS

m T	5	15	25	35	45	55	60
4.16	568	547	523	492	476	461	448
		550	511	493	475	458	449
			514		474		
			517		476		
			510				
			518				
3.1	544	526	506	487	460	444	437
	546	529	499	481	464	444	437
	544		501	487		445	
			506				
			506				
2.56	544	528	510	477	457	452	441
	543	526	507	474	460	450	441
			507				
2.04	537	521	504	489	466	446	438
	537	519	504	486	464	448	439
			506				
			503				
			505				
1.11	500	485	469	452	434	414	
	503	483	468	453	431	409	
			469				
			469				
0.38	465	458	438	418	400	381	
	465	453	433	418	401	382	
			435		402		
			434				
			438				

A7. $\Delta \varepsilon(T)$

Tableau A7 : Influence de la température $\Delta \varepsilon$, pour Np(VI)/Np(V), déterminé à chaque température (*figure 4*). $\Delta \varepsilon$ (25°C), $\Delta \varepsilon$ '(25°C) $\Delta \varepsilon$ "(25°C) sont obtenus de régression polynomiale du second ordre sur $\Delta \varepsilon$ en fonction de T.

Т	T-T°	$(T-T^{\circ})^2$	Δε			
(°C)	(°C)	(°C) ²	kg/mol			
5	-20	400	0,29551226			
15	-10	100	0,23792604			
25	0	0	0,15472639			
35	10	100	0,11333471			
45	20	400	0,09961191	Δε(25°C)	=	0,1782617
55	30	900	0,10616656	Δε'(25°C)	=	-0,005123
60	35	1225	-0,029771	Δε"(25°C)	=	4,01E-05

A8. $\Delta S, \Delta Cp$

Pour un système fermé, selon le premier principe de la thermodynamique on définit :

-Energie interne:	U = W + Q	(A8-1)
-Enthalpie: $H = U + p V$		(A8-2)
Selon le second principe de la the	ermodynamique on définit :	
-Entropie:	S	(A8-3)
-Energie libre de Helmhotz:	F = U - T S	(A8-4)
-Energie libre de Gibbs:	G = H - T S	(A8-5)

Pour une transformation infinitésimale s'effectuant de t à t+dt, les expressions (A8-1), (A8-2), (A8-3), (A8-4) et (A8-5) s'écrivent :

dH

 $dU = \left(\frac{\partial U}{\partial V}\right)_{S} dV + \left(\frac{\partial U}{\partial S}\right)_{V} dS = -pdV + TdS$ (A8-6)

$$= \left(\frac{\partial H}{\partial P}\right)_{S} dP + \left(\frac{\partial S}{\partial S}\right)_{P} dS = -Tds + VdP$$
(A8-7)

$$dF = \left(\frac{\partial F}{\partial V}\right)_{T} dV + \left(\frac{\partial F}{\partial S}\right)_{V} dT = -pdV - SdT$$
(A8-8)

$$dG = \left(\frac{\partial G}{\partial P}\right)_{T} dP + \left(\frac{\partial G}{\partial T}\right)_{P} dS = VdP - SdT$$
(A8-9)

A partir de la relation (9) on déduit :

$$\left(\frac{\partial G}{\partial T}\right)_{S} = -S \tag{A8-10}$$

La capacité calorifique est égale à: $Cp = \left(\frac{\partial H}{\partial T}\right)_{P}$;

or
$$\left(\frac{\partial H}{\partial T}\right)_{\mathbf{P}} = T\left(\frac{\partial S}{\partial T}\right)_{\mathbf{P}}$$
 on en déduit donc que : Cp = $T\left(\frac{\partial S}{\partial T}\right)_{\mathbf{P}}$ (A8-11)

Une réaction d'oxydoréduction $Ox + e^- \Leftrightarrow Re d$ s'accompagne d'une variation d'enthalpie libre, qui est égale au travail
électrique produit soit : $\Delta G = -F E$ (A8-12)Par dérivation on obtient :dG = -F dE

En combinant (A8-10) et (A8-12) on obtient une relation liant le potentiel redox à l'entropie : $\left(\frac{dE}{dT}\right)_{P} = \frac{\Delta S}{F}$

En combinant (A8-11) et (A8-12) on obtient une relation liant le potentiel redox à la capacité calorifique :

$$\left(\frac{d^{2}E}{dT^{2}}\right)_{P} = \frac{1}{F}\left(\frac{d\Delta S}{dT}\right)$$

A9. TIS pour ΔS et ΔCp

Extensions des équations de la TIS appliqué à ΔS et ΔCp

Introduisons les fonctions thermodynamiques d'excès, dans le cas de solutions non idéales. La différence entre une grandeur réelle de mélange (indice m) et la valeur qu'elle aurait si la solution était idéale, dans les mêmes conditions de pression et de température, est appelée grandeur d'excès. On peut dire aussi que cette grandeur représente l'excès d'une propriété donnée d'une solution sur sa valeur dans la solution idéale de référence. Ainsi on note l'enthalpie libre d'excès :

$$G^{ex} = G^m - G^{mr}$$
(A9-1)

avec G^m l'enthapie libre de mélange et G^{mr} l'enthalpie libre de mélange de référence. $G^{ex} = R T \ln \gamma$ (A9-2)

$$\mathbf{S}^{\text{ex}} = -\left(\frac{\partial \mathbf{G}^{\text{ex}}}{\partial \mathbf{T}}\right)_{\mathbf{P}} = -\mathbf{R}\left(\ln\gamma + \mathbf{T}\left(\frac{\partial\ln\gamma}{\partial\mathbf{T}}\right)_{\mathbf{P}}\right)$$
(A9-3)

$$Cp^{ex} = T \left(\frac{\partial S^{ex}}{\partial T} \right)_{P} = -R \ T \left(2 \left(\frac{\partial \ln \gamma}{\partial T} \right)_{P} + T \left(\frac{\partial^{2} \ln \gamma}{\partial T^{2}} \right)_{P} \right)$$
(A9-4)

Tableau A10 : Influence de la dissociation du complexe limite de Np(V). Le calcul est fait à 25°C pour la solution la moins concentrée en carbonate, on trouve (X) moins de 5 mV _{correct*xLs}

D'après la TIS on a : $\lg \gamma = -z^2 D(T,I) + \Delta \varepsilon m$

En combinant (A9-3) et (A9-5) puis (A9-4) et (A9-5) on obtient (avec $r = R \ln 10$) :

$$S^{ex} = r \left(z^2 \left(D + T \left(\frac{\partial D}{\partial T} \right)_P \right) - m \left(\varepsilon + T \left(\frac{\partial \varepsilon}{\partial T} \right)_P \right) \right)$$
(A9-6)

$$Cp^{ex} = r T \left(z^2 \left(2 \left(\frac{\partial D}{\partial T} \right)_P + T \left(\frac{\partial^2 D}{\partial T^2} \right)_P \right) - m \left(2 \left(\frac{\partial \varepsilon}{\partial T} \right)_P + T \left(\frac{\partial^2 \varepsilon}{\partial T^2} \right)_P \right) \right)$$
(A9-7)

en adoptant un développement de Taylor au second ordre de (A9-5), (A9-6) et (A9-7) au voisinage de T°, on obtient :

$$\lg \gamma \approx -z^2 (D^\circ + D^{\circ} t + 0.5 D^{\circ} t^2) + m(\varepsilon^\circ + \varepsilon^\circ t + 0.5 \varepsilon^{\circ} t^2)$$
(A9-8)
$$S^{ex_{o,t}}(z^2 (D^\circ + T^\circ D^{\circ} + (2D^\circ + T^\circ D^{\circ}) t + 1.5 D^{\circ} t^2) - m(\varepsilon^\circ + T^\circ c^{\circ} + (2c^\circ + T^\circ c^{\circ}) t + 1.5 c^{\circ} t^2)$$
(A9-8)

$$S^{ex} \approx r(z^{2}(D^{o}+T^{o}D^{o}+(2D^{o}+T^{o}D^{o})t+1,5 D^{o}t^{2}) - m(\varepsilon^{o}+T^{o}\varepsilon^{o}+(2\varepsilon^{o}+T^{o}\varepsilon^{o})t+1,5\varepsilon^{o}t^{2})$$
(A9-9)

$$Cp^{ex} \approx r(z^2(T^{\circ}(2D^{\circ}+T^{\circ}D^{\circ})+(2D^{\circ}+4T^{\circ}D^{\circ})t+3D^{\circ}t^2) - m(T^{\circ}(2\varepsilon^{\circ}+T^{\circ}\varepsilon^{\circ})+(2\varepsilon^{\circ}+4T^{\circ}\varepsilon^{\circ})t+3\varepsilon^{\circ}t^2)$$
(A9-10)

où X'° est la valeur de
$$\left(\frac{\partial X}{\partial T}\right)_{\mathbf{P}}$$
 pour T = T° et I ; X = D, ε ou $\left(\frac{\partial X}{\partial T}\right)_{\mathbf{P}}$.

A10. Dissociation du complexe limite de Np(V)

entrées	$lgk_3(0)(V)$	-0,86	valeurs	calculées	résultat		formule utilisée (dans EXCEL)
	$\Delta \epsilon(k_3)(V)$	-0,06		A(T)	59,159007	78	8,3144126*298,15*LN(10)/96485,30929*1000
	D	0,1867	70694	m _{CO3} 2-	0,190716	521	$m_{Na}^{+/2}$
	m _{Na} +	0,3814	3241	$lgk_3(I)(V)$	1,403369	924	$lgk_3(0)(V)+12*D+0,06*m_{Na}+$
			résultat	: X (mV)	4,836489	965	$LOG(1/(10^{(lgk_{3}(I)(V))*m_{CO_{3}}^{2})+1)*A(T)$
					Е	1/2 - X	(mV)
					E _{1/2} E	$E_{1/2}$ co	rrigé
					437,76	442,6	50
					432,76	437,6	50
					434,76	439,6	50
					433,76	438,6	50
					436,76	441,6	50

Figure A10 : Correction de la dissociation du complexe limite de Np(V). Les droites de régression de la TIS, sont tracées avec les valeurs de E'°(25°C,0) (mV/ESH) et $\Delta \epsilon$ (25°C) (kg/mol.) indiquées sur la figure. FORCE XLS

(A9-5)

Suppléments

2DEA.DOC, le 16/01/95 09:52

S1. Résultats expérimentaux

Tableau S1.a : Potentiels mesurés. Epred et Epox (mV/électrode d'argent) sont les potentiels des pics de réduction et d'oxydation, T la température (°C), I la force ionique en mol./l (M) et en mol./kg (m), Na_r la concentration de Na⁺ dans le compartiment de l'électrode de référence (M et m) et Cl⁻_r, la concentration de Cl⁻ dans le compartiment de l'électrode de référence (m)¹. Si c est la molarité totale de Na₂CO₃, [Na⁺]=2 c mol./l et on considère que la force ionique est I=3 c mol./l. Les molalités sont m=p c mol./kg, m_{Na}⁺=p [Na⁺] mol./kg et i=p I mol./kg où p≈10^{0,0043 I} l/kg est utilisé². Dans le compartiment de l'électrode de référence, la force ionique est³ I_r=I mol./l, m_{CI}-=0,02 mol./kg, p_r≈10^{0,0228 [Na⁺]_r. Les molalités sont i_r=p_r I_r mol./kg etc. D'après le § 4.5.1. et le tableau du § 4.5.3, la solution où plonge l'électrode de travail est préparée par dissolution dans de l'eau de Na₂CO₃ solide⁴ pesé, la solution est ensuite redosée trois fois par HNO₃. Le Np est sous forme Np(V) 0,6 mM obtenu par dilution d'une solution mère dosée en milieu acide par spectrophotométrie. Les chiffres en italique dans la ligne du haut, *j-p*, sont un repère signifiant *j*=jour (du mois de mai 1994) et *p*=page du cahier de laboratoire, dans la case du dessous *M-S* sont les potentiels (mV) de contrôle de l'électrode de référence. Dans chaque colonne de droite, c'est une numérotation des mesures, les autres nombres en italique sont des mesures qui n'étaient pas dans le fichier EXCEL (*voir page 34*) recepier ³ dumente.}

	1		2214 1/1 6		1		SEM VI C				IMVIC	
Na_2CO_3	0,22 M		2281.AL3	27-25	0,55 M		55MLALS	11-13	1 M		IMALS	10-12
Ι	0,66 M	0,66 m			1,65 M	1,68 m		1,0-1,0	3 M	3,09 m		0,8-0,9
Na _r	0,66 M	0,68 m			1,65 M	1,80 m			3 M	3,51 m		
Т	Epred	Epox	E1/2		Epred	Epox	E1/2		Epred	Epox	E1/2	
5	182	74	128	afl	220	104	162	25-1	252	150	201	20-1
	180	76	128	af2	220	110	165	26-1	250	150	200	21-1
15	166	68	117	af3	202	96	149	25-2	236	138	187	20-2
	168	68	118	agl	200	94	147	26-2	232	138	185	21-2
25	162	48	105	af4	190	82	136	25-3	220	126	173	20-3
	146	54	100	ag3	186	84	135	25-4	216	132	174	20-4
	148	56	102	ag2	190	82	136	23-1	220	130	175	17-1
	148	54	101	af5	184	88	136	26-3	216	128	172	21-3
	148	60	104	ag'	186	94		24-1	214	134	174	18-1
	150	64		af6					214	130	172	19-3
35	138	40	89	af7	174	72	123	23-2	210	114	162	17-2
	138	40	89	ag5	168	80	124	24-2	200	118	159	18-2
45	116	34	75	af8	158	60	109	23-3	190	98	144	17-3
	116	36	76	ag7	150	62	106	24-3	182	102	142	18-3
	120	34	77	af9								
55	104	18	61	af10					172	86	129	17-4
	104	20	62	ag8	140	48	94	23-4	170	92	131	19-1
				-	132	46	89	24-4				
60									164	82	123	17-5
									164	84	124	19-2

¹Je n'ai pas retrouvé dans les cahiers de laboratoire, la composition exacte des solutions. Sophie Offerlé a certainement utilisé dans le compartiment de l'électrode de travail, des solutions de Na_2CO_3 de molarité c (c=2 1,5 1,25 1 0,55 et 0,22 M) préparées par pesée du solide Na_2CO_3 . Pour l'électrode de référence elle a peut-être préparé par pesées de NaCl et NaClO₄, des solutions de molarité 3 c M en Na⁺, (3c-0,02) M en ClO₄⁻ et 0,02 M en Cl⁻, comme indiqué au § 4.5.1. et dans le tableau du § 4.5.3. On aurait donc [Cl⁻]=0,2 mol./l et non m_{Cl}=0,2mol./kg (comme elle le dit). Cela induirait une erreur dans le calcul du potentiel de l'électrode de référence, à 25°C au maximum (pour la solution de force ionique 6 M) de 59,16 lgp_{NaClO4}≈59,16×6×0,02276≈8 mV.

de référence, à 25°C au maximum (pour la solution de force ionique 6 M) de 59,16 $\lg p_{NaClO_4} \approx 59,16 \times 6 \times 0,02276 \approx 8$ mV. ²Les formules que j'ai établies sont $p_{NaClO_4} \approx 10^{0,02276[NaClO_4]}$ l/kg et $p_{Na_2CO_3} \approx 10^{0,005[Na_2CO_3]}$ l/kg. Il semble donc qu'il y ait une faute sur l'emploi de cette dernière, ce qui induit une erreur essentiellement sur $\Delta \varepsilon$; mais elle doit être assez faible.

³Sophie Offerlé a ainsi préparé ses solutions pour que la force ionique soit la même de part et d'autre de la jonction entre les solutions des électrodes de travail et de référence. Le but est de minimiser le potentiel de jonction, il est atteint. Toutefois (mais nous ne l'avons pas vérifié systématiquement au laboratoire), il devrait être préférable d'égaliser les concentrations des ions les plus mobiles, donc les plus petits : à part H^+ , la mobilité de la plupart des ions minéraux courants est pratiquement la même. Il aurait néanmoins peut-être été préférable d'utiliser la même concentration (plutôt molarité ici que molalité, mais la différence ne devrait pas avoir d'effet perceptible sur le potentiel de jonction) de Na+ dans les deux compartiments. Dans tous les cas il faut donc vérifier, par une mesure, la valeur du potentiel de jonction, Sophie Offerlé l'a fait et c'est l'essentiel.

⁴En principe, il faut préparer les solutions à partir de NaOH (NORMADOSE) et de NaHCO₃ solide pesé (NORMAPUR), puis redoser ces solutions par une solution acide préparée à partir de NORMADOSE. De cette façon on contrôle le titre de chaque solution de deux façons indépendantes. La solution de Na₂CO₃ est ensuite préparée par mélange de celles de NaHCO₃ et NaOH, car Na₂CO₃ n'est pas un produit "pur pour analyse" : il faut garder à l'abri de l'air toutes les solutions de pH>6. Il peut-être commode de maintenir constant la concentration de Na⁺, surtout si on utilise la TIS, et de n'utiliser que les unités molales.

CEA DCC/DESD/SESD/Sections de GéoChimie Sophie Offerlé..

274

74

28-2

200

20,4

25,2

244

110

14-2

26,4

230

54

22-6

Np(VI)/Np(V) en milieu carbonate concentré.

29	9/	3	9
_	~ .	~	-

Na ₂ CO ₂	1,25 M		1-25.XLS 125.XLS	16-14	1,5 M		1-5.XLS	26-24	2 M		2M.XLS	19-23
I	3,75 M	3,89 m		1,0-1,2	4,5 M	4,71 m		1,0-1,2	6 M	6,37 m		0,6-0,6
Nar	3,75 M	4,57 m			4,5 M	5,70 m			6 M	8,22 m		· · · ·
Т	Epred	Epox	E1/2		Epred	Epox	E1/2		Epred	Epox	E1/2	
5	278	138	208	31-2	280	140	210	ad I	298	176	237	ab1
	270	144	207	32-2	280	144	212	acl	286	182		acl
					280	140	210	ad2				
10									284	158	221	ac2
15	258	132	195	31-3	254	136	195	ad3	272	168	220	ab2
	252	134	193	32-	260	136	198	ae2	276	170	223	52-1
25	240	124	182	31-4	236	122	179	ad4	248	154	201	51-1
	232	124	178	32-1	226	120	173		236	142	189	46-2
	236	108	178	29-1	230	120	175		244	140	192	44-1
	232	110	173	30-1	234	124	179	ae3	250	140	195	
	232	124	176	31-1	236	122	179	ae4	238	138	188	51-3
					238	124		ad5	252	140	196	50-1
35	210	94	152	29-2	214	116	165	ad7	222	128	175	48-2
	204	94	149	30-2	206	112	159	ae5	224	128	176	46-1
					216	112	164	ad6				
45	188	86	137	29-3	184	102	143	ad8	210	118	164	47-1
	188	90	139	30-3	194	98	146	ae6	210	116	163	47-2
									208	116	162	46-2
									208	120	164	46-3
55	186	88	137	29-4	178	86	132	ad9	200	108	154	47-3
	180	90	135	30-4	178	86	132	ae7	194	108	151	50-2
					178	88	133	ad10				
60	174	84	129	29-5	172	82	127	ad11	188	100	144	47-4
	174	84	129	30-5	170	84	127	ae8	190	100	145	50-3

Tableau S1.b : Influence de la vitesse de balayage. v est la vitesse de balayage (mV/s), ip le courant de pic (μ A) Epred et Epox (mV/électrode d'argent) les potentiels des pics d'oxydation et de réduction respectivement, Np la concentration de Np(V) (mM). La température est 25°C. Les chiffres en italique dans la ligne du haut, *j-p*, sont un repère signifiant *j*=jour (du mois de mai 1994) et *p*=page du cahier de laboratoire, dans la case du dessous *M-S* sont les potentiels de contrôle de l'électrode de référence. Dans chaque colonne de droite, c'est une numérotation des mesures, les autres nombres en italique sont des mesures qui n'étaient pas dans le fichier EXCEL (*voir page 34*). VITOUT NEMERATIVESE NE demonstrative VITAN NE VITAN NE

1		nemer L	MOLL	von pu	ge J7).	VITTOUT.XLS is	aentique a VITESS	E.ALS, et repris	dans viiVAL.XL	S et VII VAL2.X	LS						
		Np 0,6	Na ₂ CO ₃	2 M		Np 0,69	Na ₂ CO ₃	1,5 M	5-816	Np 5	Na ₂ CO ₃	1,5 M	17-15 21	Np 0,6	5 Na ₂ CO ₃	1,5 M	6-11 17
ſ	v	ip	Epred	Epox		ip	Epred	Epox		ip	Epred	Epox	0,5-0,6	ip	Epred	Epox	1,0-1,0
ľ	2	5,8	224	154													
	5	8,8	228	150													
	10					21,8	210	126	al	17,8	224	100	33-1	8,3	196	114	<i>b1</i>
											216	104	34-1				
	20													11,8	200	108	<i>b2</i>
	30	19	240	138		34,8	220	120	a2	28,8	240	84	33-2	14,6	202	110	b3
											230	84	34-2				
	50	23,6	242	136		43,6	224	116	а3	36,8	244	80	35-1	17,6	206	106	b4
											236	78	36-1				
	70					50,4	226	112	a4					20,6	210	100	<i>b5</i>
	100					57,6	232	106	а5	52			35-2	24	214	98	b6
	130					68,8	236	104	аб								
	150									57,6			35-3	27,2	220	92	<i>b7</i>
	200						242	96	a7	60			35-4	36,4	226	84	b8
	230						246	94	a8								
	260						248	90	a9								
l	300					33.0.6	254	86	<i>a10</i>								
		Np 0,6	Na ₂ CO ₃	1,25 M	16-14 20	Np 0,6	Na ₂ CO ₃	1 M	10-12 18	Np 0,6	Na ₂ CO ₃	0,55 M	11-13 19				
	v	ip	Epred	Epox	1,0-1,2	ip	Epred	Epox	0,8-0,9	ip	Epred	Epox	1,0-1,0				
	2										224	154	aa l				
	5					4,5	210	134	14-3		228	150	aa2				
	10	5,9	218	122	28-3					7,5	180	90	22-1				
	30	9,7	232	110	27-1	10,4	222	120	13-1	12	192	84	22-2				
			234	106	28-4						240	138	aa3				
	50			0.6			•••				242	136	aa4				
	60	13	246	96	27-2	14,6	230	110	13-2	15,4	200	72	22-3				
	100	16,8	260	82	27-3	17,6	234	110	13-3	20,2	210	64	22-4				
	1.50	20.4	260	84	27-4	20	244	110					22.5				
1	150	20,4	274	70	28-1	20	244	110	14-1	24,4	222	56	22-5				

S2. Le milieu carbonate

S2.1. Constante d'équilibre et TIS

Les valeurs des constantes d'équilibre du système $HCO_3^-, CO_3^{2-}, CO_2^-, données par la TDB [92GRE], ne redonnent pas exactement les valeurs publiées à différentes forces ioniques en milieu NaClO₄ à 25°C. Ce problème est maintenant corrigé notamment par des calculs de Kastriot Spahiu et de Piotr Robouch. Sans attendre ces résultats nous avions corrigé les valeurs existantes, en conservant les valeurs standard des constantes d'équilibre et en modifiant les coefficients d'interaction spécifique afin d'obtenir les valeurs de constante d'équilibre, publiées par Silen à I = 3 M.$

Tableau S2.1 : Calcul de \varepsilon(Na^+,HCO_3^-) et \varepsilon(Na^+,CO_3^{2-}). Les valeurs en gras sont celles sur lesquelles nous nous basons. e(X,Y) est $\varepsilon(X,Y)$, DZ2 est Δz^2 , De est $\Delta \varepsilon$, m est la molalité, M la molarité, D le terme de Debye-Hückel de la TIS, Kxm est la valeur de Kx en unité molale. $_{CO3XLS}$

	e(l	H,ClO4)	0,1376		lgK°	7,82		10,33		
	e(C	CO3,Na)	-0,0697		Dn	-2		-1		
	e(HC	CO3,Na)	0,0019		DZ2	-2		-4		
	lna	aH2O/m	-0,0151		De	-0,1546		-0,0660		
			lnaH2O/m	n- e(H,ClO	D4)- e(HC	CO3,Na)		e(HCO3	,Na)- e(H	,ClO4)- e(CO3,Na)
	lgp/M	0,0221		Kp=pCO	2 aH2O/I	HCO3/H		K1=HCC	03/H/CO3	
		0,0221	33491985	2099*M	1,5					
			10^lgp		0,5091					
	m	М	р	lgp	D	lgKp	lgKpm	lgK1	lgK1m	
-	3,4956	3	1,1652	0,0664	0,2502	7,86	7,9928	9,56	9,6264	
	2,2146	2	1,1073	0,0443	0,2344	7,6936	7,7821	9,5386	9,5829	
	1,0523	1	1,05229	0,0221	0,2057	7,5713	7,6155	9,5766	9,5987	
	0,5129	0,5	1,02581	0,0111	0,1758	7,5477	7,5699	9,6608	9,6718	
	0,3046	0,3	1,01541	0,0066	0,1537	7,5597	7,5729	9,7352	9,7419	
	0,202	0,2	1,01024	0,0044	0,1367	7,5779	7,5867	9,7966	9,801	
	0,1005	0,1	1,00511	0,0022	0,1094	7,6168	7,6212	9,8991	9,9013	
	0	0	1	0	0	7,82	7,82	10,33	10,33	

Elles sont cohérentes avec les valeurs publiées dans d'autres milieux et celles sélectionnées par Kastriot Spahiu et Piotr Robouch. Ce calcul est simple, la difficulté principale est la critique et la sélection des mesures publiées. L'erreur venait peut-être du fait que les coefficients de la TIS ont été calculés à partir de résultats de mesures isopiestiques. Soit ces mesures étaient imprécises, soit il y a une erreur systématique due à des échanges gazeux (gaz carbonique) au-dessus de la solution, soit il faut modifier l'interprétation de telles mesures pour tenir compte du fait que ni Na₂CO₃, ni NaHCO₃ ne sont des électrolytes forts. C'est ce dernier point que nous explicitons maintenant.

S2.2. Electrolytes faibles

Pour NaHCO₃: 2 NaHCO₃
$$\rightarrow$$
 2 Na⁺ + 2 HCO₃⁻ \Leftrightarrow 2 Na⁺ + H₂O + CO₂ + CO₂²⁻ (a-1)
conservation de la matière (approximation m_{CO₂} \approx m_{CO₃}): m = m_{HCO₃} + 2 m_{CO₃} et m = m_{Na} (a-2)

$$0 = \sum_{i} n_{i} d\mu_{i}$$
 relation de Gibbs Duhem (a-3)

$$0 = \frac{1000}{M_{H_2O}} d\mu_{H_2O} + m_{Na} d\mu_{Na} + m_{HCO_3} d\mu_{HCO_3} + m_{CO_3} d\mu_{CO_3} + m_{CO_2} d\mu_{CO_2}$$
(a-4)

$$0 = \frac{1000}{M_{H_2O}} d\mu_{H_2O} + md\mu_{Na} + (m - 2m_{CO_3}) d\mu_{HCO_3} + m_{CO_3} d(\mu_{CO_3} + \mu_{CO_2})$$
(a-5)

$$0 = \frac{1000}{M_{H_2O}} d\mu_{H_2O} + md(\mu_{Na} + \mu_{HCO_3}) + m_{CO_3}d(\mu_{CO_3} + \mu_{CO_2} - 2\mu_{HCO_3})$$
(a-6)

La première partie du membre de droite de cette égalité (a-6), est l'équation classique pour un électrolyte fort, la dernière partie conduit, si elle est nulle, à la loi d'action de masse qui n'est donc pas vérifiée ici dans son écriture classique. On introduit donc le produit K_1 (a-8) en écrivant les potentiels chimiques sous la forme

$$\mu_i = \mu_i^{\circ} + R T \ln a_i \tag{a-7}$$

$$K_{1} = \frac{a_{CO_{2}}a_{CO_{3}}a_{H_{2}O}}{a_{HCO_{3}}^{2}} = \frac{\left(m - m_{HCO_{3}}\right)^{2}}{4m_{HCO_{3}}} \frac{a_{H_{2}O}\gamma_{CO_{2}}\gamma_{CO_{3}}}{\gamma_{HCO_{3}}^{2}}$$
(a-8)

оù

(a-6) s'écrit

$$\mathbf{a}_{i} = \mathbf{m}_{i} \,\boldsymbol{\gamma}_{i} \tag{a-9}$$

alors
$$-\frac{1000}{M_{H_2O}} d\ln(a_{H_2O}) = md\ln(a_{Na}a_{HCO_3}) + m_{CO_3}d\ln\left(\frac{K_1}{a_{H_2O}}\right)$$
 (a-10)

où on reconnaît à nouveau l'équation classique pour un électrolyte fort. Si maintenant on admet la loi d'action de masse (au moins comme une hypothèse supplémentaire pour lier le formalisme des chimistes à celui des physiciens exploitant les mesures isopiestiques)⁵, K_1 est alors constant dans (a-10)

$$\left(-\frac{1000}{M_{H_2O}} + m_{CO_3}\right) d \ln a_{H_2O} = md \left(\ln a_{Na} a_{HCO_3}\right)$$
(a-11)

$$\left(-\frac{1000}{M_{H_{2}O}} + m_{CO_{3}}\right) d\ln a_{H_{2}O} = m d \ln \left(\gamma_{Na} \gamma_{HCO_{3}} m^{2} \left(1 - 2\frac{m_{CO_{3}}}{m}\right)\right)$$
(a-12)

Les coefficients d'activité et les concentrations ont ici les valeurs tenant compte de la dissociation partielle du sel NaHCO₃, valeurs différentes de celles obtenues si on considère ce sel comme un électrolyte fort. Les équations (a-2), (a-8) et (a-9) permettent de calculer la spéciation à condition de connaître les coefficients d'activité, par exemple :

$$\lg \gamma_{Na} = -D + \varepsilon (Na, CO_3) m_{CO3} + \varepsilon (Na, HCO_3) m_{HCO_3}$$
(a-13)

$$\lg \gamma_{\rm CO_3} = -4D + \varepsilon (\rm Na, \rm CO_3) m_{\rm Na}$$
(a-14)

$$\lg \gamma_{\rm HCO_3} = -D + \varepsilon (\rm Na, \rm HCO_3) m_{\rm Na}$$
(a-15)

$$\lg_{\gamma_{\rm CO_2}} = 0 \tag{a-16}$$

$$I = \frac{\left(m_{Na} + 4m_{CO_3} + m_{HCO_3}\right)}{2} = m + \frac{1}{2}m_{CO_3}$$
(a-17)

où D dépend de la force ionique $I = \frac{(1 + 4)^2}{2}$

(a-7) reste valable,

(a-11) devient

L'équation (a-12) rend compte des résultats expérimentaux (mesures isopiestiques) qu'on doit ajuster à cette équation en optimisant la constante d'équilibre, K_1 , et les coefficients d'interaction spécifique⁶ ϵ (Na⁺,CO₃²⁻) et ϵ (Na⁺,HCO₃²⁻). Ce genre d'ajustement comporte des difficultés numériques, vraisemblablement parce que constante d'équilibre et coefficient d'activité sont corrélés. On choisit plutôt de déterminer ces paramètres à partir de mesures chimiques (§S2.1.). On vérifie alors simplement que les résultats sont cohérents avec la relation (a-12).

Pour Na₂CO₃
$$Na_2CO_3 + H_2O \rightarrow 2 Na^+ + CO_3^{2-} + H_2O \Leftrightarrow HCO_3^- + OH^-$$
 (b-1)

(approximation
$$m_{HCO_3} \approx m_{OH}$$
) $m_{CO_3} + m_{HCO_3} \approx m$ et $m_{Na} = 2m$ (b-2)

La relation de Gibbs Duhem (a-3) reste vérifiée et (a-4) devient

$$0 = \frac{1000}{M_{H_2O}} d\mu_{H_2O} + m_{Na} d\mu_{Na} + m_{HCO_3} d\mu_{HCO_3} + m_{CO_3} d\mu_{CO_3} + m_{OH} d\mu_{OH}$$
(b-4)

$$0 = \frac{1000}{M_{H_2O}} d\mu_{H_2O} + 2md\mu_{Na} + (m - m_{HCO_3}) d\mu_{CO_3} + m_{HCO_3} d(\mu_{HCO_3} + \mu_{OH})$$
(b-5)

$$0 = \frac{1000}{M_{H_2O}} d\mu_{H_2O} + md(2\mu_{Na} + \mu_{CO_3}) + m_{HCO_3}d(\mu_{HCO_3} + \mu_{OH} - \mu_{CO_3})$$
(b-6)

$$K_2 = \frac{a_{HCO_3}a_{OH}}{a_{CO_2}a_{H_2O}} = \frac{m_{HCO_3}m_{OH}}{m_{CO_2}} \frac{\gamma_{HCO_3}\gamma_{OH}}{\gamma_{CO_2}a_{H_2O}}$$
(b-8)

$$-\left(\frac{1000}{M_{H_2O}} + m_{HCO_3}\right) d \ln a_{H_2O} = m d \ln \left(a_{Na}^2 a_{CO_3}\right)$$
(b-11)

$$-\left(\frac{1000}{M_{H_2O}} + m_{HCO_3}\right) d\ln a_{H_2O} = m d \ln \left(\gamma_{Na}^2 \gamma_{CO_3} m^3 \left(1 - \frac{m}{m_{HCO_3}}\right)\right)$$
(b-12)

à (a-13) à (a-15) s'ajoute
$$\lg \gamma_{OH} = -D + \varepsilon_{OH,Na} mNa$$
 (b-16)

⁵En fait (a-7) est une définition possible de l'activité, la loi d'action de masse (a-8) reste donc valable dans sa forme classique (il n'est pas besoin de l'admettre).

⁶Dans les équations de ce §, on a généralement omis les charges pour simplifier les écritures.

$$I = \frac{\left(m_{Na} + 4m_{CO_3} + m_{HCO_3} + m_{OH}\right)}{2} = 3m - m_{HCO_3}$$
(b-17)

Nous avons résolu l'équation différentielle pour NaHCO₃ sur EXCEL, la spéciation est d'abord calculée de façon indépendante (sur EXCEL également). Les résultats semblent cohérents mais peu précis. Nous avons alors calculé ce que donne le même type de traitement pour un électrolyte fort ce qui nous a conduit à calculer les coefficients de la TIS de différentes façons : à chaque force ionique, en moyennant, en ajustant à partir des expressions du coefficient d'activité moyen, du coefficient osmotique ou d'autres fonctions déduites par dérivation. Pour l'utilisation en chimie, il nous semble plus cohérent de se baser sur les coefficients d'activité moyen plutôt que les autres fonctions. Nous donnons ces résultats.

Figure S2.2.a : coefficient d'activité moyen de NaHCO₃, γ_{\pm} , en fonction de la molalité. InG est la valeur de $\ln\gamma_{\pm}$ calculée selon la formule de Pitzer, pour cette formule : F est la contribution du terme de Debye-Hückel, B est le terme du 2° viriel, C le terme du 3° viriel. InGd est la valeur de $\ln\gamma_{\pm}$ calculée selon la formule de la TIS, pour cette formule : D est la contribution du terme de Debye-Hückel, V est le terme du 2° viriel. Ainsi $\ln G = F + B + C$ (*annexe 1*) et $\ln Gg = D + V$ (*annexe 3*). C'est presque négligeable, sauf aux forces ioniques élevées. B0 ou V ont une influence notable à force ionique élevée, ils dépendent chacun d'un paramètre ajusté : $\beta^{(0)}$ (*annexe 1*) et ε (*annexe 3*) respectivement. Par contre D ou (F + B1) varient de façon importante surtout à faible force ionique ; or B1 dépend d'un paramètre ajusté (*annexe 3*) qui ne peut donc être déterminé sans ambiguïté qu'à partir de données allant jusqu'aux faibles I : ceci est à l'origine des difficultés d'utilisation de la formule de Pitzer pour les complexes. La formule de la TIS évite cet inconvénient. ε est obtenu par régression sur $\ln\gamma_{\pm}$: ε prend la valeur qui rend minimum la somme des valeurs de (InG-InGg)² pour m supérieur à 0,5 mol./kg. GNAHCO3.DOC

Figure S2.2.b : coefficient d'activité moyen de HClO₄, γ_{\pm} , en fonction de la molalité. Cette figure est analogue à la *figure S2.2.a* sur NaHCO₃, elle permet de la comparer à ce cas classique d'un électrolyte fort. GHCLOADOC

0

-0,1

coefficient de la TIS (kg/mole)

0

Figure S2.2.e : fonction d'activité d'eau de NaHCO₃ en fonction de la molalité. Cette fonction est -(n_w/n)($\ln a_w$)'-1, où x' est la dérivée de x par rapport à la molalité, $n_w/n=250/9$ et a_w est l'activité d'eau. Pour un électrolyte fort (figure du haut), cette fonction est -(n_w/n)($\ln a_w$)'-1=m($\ln \gamma_{\pm}$)', où x' est la dérivée de x par rapport à la molalité, $n_w/n=250/9$ et a_w est l'activité d'eau. La fonction représentée est donc homogène à $\ln \gamma_{\pm}$. Les valeurs numériques des paramètres utilisés pour tracer ces courbes, notamment celle de ε , sont les mêmes que celles de la *figure S2.2.a.* On fait apparaître la contribution de chacun des termes des formules de Pitzer et de la TIS. Dans la figure du bas, on reproduit partiellement la figure du haut pour comparer la fonction d'activité d'eau pour NaHCO₃ considéré comme un électrolyte fort ou un électrolyte faible. Les résultats semblent cohérents ; mais la précision n'est pas suffisante pour ajuster valablement des paramètres (ε et/ou la constante d'équilibre) sur cette fonction : il faut utiliser des mesures indépendantes mettant nettement en évidence la dissociation de HCO₃⁻, par exemple une série de dosages par un acide fort à plusieurs forces ioniques, en maintenant constante la force ionique pendant chaque dosage. Ce genre de mesure classique est publié (*tableau S2.1.*). _{GNAHCO3DOC}

S3. Electrolytes forts

_

_

S3.1. ε

Tableaux S3.1.a : ε (mol/kg) entre le cation en haut à gauche et les anions du reste de la première ligne. ε_m est la moyenne des ε entre 0,5 et 4 mole/kg, s l'écart type, ε_{γ} la valeur minimisant la somme des moindres carrés du coefficient d'activité moyen. La première colonne donne la molalité. PSITRESALS

	Н	HSO4	HSO4	NO3	ClO4	Ι	Br	Cl	
	εγ	0,167	0,163	0,061	0,133	0,184	0,154	0,121	
	ε _m	0,179	0,170	0,065	0,123	0,188	0,152	0,116	
_	σ	0,015	0,009	0,004	0,011	0,008	0,002	0,005	
	0,1	0,257	0,216	0,074	0,093	0,236	0,151	0,096	
	0,2	0,238	0,206	0,075	0,101	0,224	0,152	0,103	
	0,3	0,225	0,198	0,074	0,104	0,215	0,152	0,106	
	0,5	0,208	0,187	0,071	0,108	0,204	0,151	0,109	
	0,7	0,197	0,180	0,069	0,111	0,197	0,150	0,111	
	1	0,186	0,174	0,067	0,115	0,190	0,150	0,113	
	1,5	0,176	0,167	0,065	0,120	0,184	0,150	0,115	
	2	0,170	0,164	0,063	0,124	0,182	0,151	0,117	
	2,5	0,167	0,163	0,062	0,129	0,182	0,152	0,120	
	3	0,165	0,162	0,061	0,133	0,182	0,154	0,121	
	4	0,163	0,161	0,060	0,142	0,185	0,157	0,125	
	5	0,162	0,162	0,058	0,149	0,188	0,160	0,128	
	6	0,162	0,162	0,056	0,157	0,191	0,162	0,130	
Li NO3		NO2	BrO3	ClO4	ClO3	OH	Ι	Br	Cl
εγ	0,077	0,074	0,037	0,147	0,098	-0,034	0,155	0,116	0,104
ε _m	0,075	0,075	0,027	0,149	0,093	-0,049	0,157	0,109	0,097
S	0,002	0,002	0,011	0,003	0,006	0,016	0,002	0,009	0,006
0,1	0,056	0,073	-0,022	0,168	0,056	-0,125	0,165	0,073	0,078
0,2	0,064	0,077	-0,007	0,164	0,068	-0,104	0,164	0,084	0,084
0,3	0,068	0,078	0,001	0,161	0,075	-0,091	0,163	0,090	0,087
0,5	0,071	0,077	0,010	0,156	0,082	-0,077	0,160	0,097	0,089
0,7	0,073	0,077	0,015	0,153	0,086	-0,067	0,157	0,101	0,091
1	0,074	0,076	0,021	0,149	0,090	-0,058	0,155	0,106	0,092
1,5	0,076	0,075	0,027	0,147	0,094	-0,048	0,154	0,112	0,095
2	0,077	0,075	0,031	0,146	0,096	-0,042		0,117	0,098
2,5	0,077	0,074	0,035	0,146	0,098	-0,037		0,121	0,101
3	0,077	0,074	0,037	0,147	0,099	-0,033			0,104
4	0,077	0,073	0,042	0,148	0,099	-0,027			0,109
5	0,076	0,071	0,045		0,099				0,113
6	0,074	0,070							0,117

Na	H2AsO4	H2PO4	HSO4	HCO3	HSe	NO3	NO2	CNS	BrO3	ClO4	ClO3	ОН	Ι	Br	NaCl	NaF
εγ	-0,426	-0,086	0,369	-0,060	-0,014	-0,040	-0,005	0,052	-0,060	0,010	-0,009	0,046	0,077	0,051	0,032	-0,043
ε _m	-0,428	-0,113	0,372	-0,072	-0,017	-0,051	-0,018	0,054	-0,072	0,005	-0,020	0,036	0,075	0,045	0,025	-0,045
S	0,002	0,030	0,004	0,016	0,004	0,0129	0,0159	0,002	0,013	0,005	0,0112	0,011	0,003	0,007	0,008	0,0047
0,1	-0,445	-0,236	0,390	-0,164	-0,045	-0,113	-0,103	0,062	-0,130	-0,020	-0,062	-0,004	0,071	0,018	-0,006	-0,083
0,2	-0,438	-0,204	0,387	-0,133	-0,034	-0,095	-0,078	0,062	-0,112	-0,012	-0,050	0,007	0,073	0,027	0,003	-0,068
0,3	-0,434	-0,185	0,383	-0,115	-0,029	-0,085	-0,064	0,061	-0,103	-0,007	-0,044	0,012	0,074	0,031	0,008	-0,06
0,5	-0,431	-0,162	0,378	-0,093	-0,023	-0,073	-0,047	0,059	-0,091	-0,003	-0,037	0,019	0,073	0,035	0,013	-0,051
0,7	-0,429	-0,147	0,375	-0,079	-0,019	-0,066	-0,036	0,057	-0,084	-0,001	-0,032	0,023	0,072	0,037	0,016	-0,045
1	-0,427	-0,131	0,372	-0,065	-0,015	-0,059	-0,026	0,055	-0,076	0,002	-0,027	0,028	0,072	0,040	0,020	-0,039
1,5	-0,424	-0,114	0,369	-0,050	-0,011	-0,051	-0,016	0,053	-0,066	0,005	-0,021	0,034	0,073	0,044	0,024	
2		-0,102	0,368			-0,046	-0,010	0,052	-0,059	0,007	-0,016	0,039	0,074	0,047	0,027	
2,5		-0,092				-0,042	-0,006	0,052	-0,053	0,009	-0,012	0,043	0,075	0,049	0,030	
3		-0,084				-0,039	-0,003	0,052		0,010	-0,009	0,046	0,077	0,051	0,033	
4		-0,072				-0,034	0,001	0,052		0,013	-0,002	0,053	0,080	0,055	0,037	
5		-0,061				-0,031	0,002			0,015		0,059			0,040	
6		-0,052				-0,028				0,016		0,064			0,043	

Tableaux S1.a et b	(suite) : points	supplémentaires non pris en	compte dans	les calculs.
Na ₂ CO ₃ 1,5 M, p	10	Na ₂ CO	3 1,5 M, <i>p1</i>	l, 6/5/1994
$N_{\rm m} 0.60 {\rm m}M$		Nr 0	C and M and	$10 \rightarrow 10$

Np 5 mM, ref. 0.5 et 0.7

						1	чр 0,0 m	., <i>rej. 1</i> ,	,0 01 1,0)	rip	J milvi,	<i>TCJ</i> . 0,5	/ 61 0,/	
TE	Epred	Epox		Epred	Epox		Epred	Epox		Epred	Epox		Epred	Epox	
5 2	284	110	5-4	280	122	6-3	232	128	9-1	332	100	41-2	330	98	42-2
										318	112	41-3			
15 2	258	110	5-2	252	112	6-2				284	98	40-1	310	80	42-3
2	268	<i>98</i>	5-3												
25 2	220	115	3-1	229	103	4-1	206	110	9-2	240	110	37-1	238	112	38-1
2	228	102	5-1	226	106	6-1	204	110	9-3	268	100	41-1	276	98	42-1
							224	92	10-1						
35	194	94	3-2	204	90	4-2	190	94	10-2	230	110	37-2	232	110	38-2
45	175	80	3-3	182	81	4-3	172	84	10-3	210	104	39-1	210	102	38-3
										210	100	<i>39-2</i>			
55	166	72	3-4	162	74	4-4	154	68	10-4	198	88	39-3	194	184	38-4
60	158	66	3-5							186	76	3ç-4	190	96	38-5

Na ₂ CO ₃ 1,5 M, <i>p11</i> , 6/5/1994	
Np 0,6 mM, ref. 1,2 et 1,0	

v	Epred	Epox		Epred	Epox	
10	196	114	Al			
20	200	108	A2	222	124	B1
30	202	110	A3	230	230	
				226	120	B2
50	206	106	A4	244	118	<i>B3</i>
70	210	100	A5			
100	214	98	A6			
150	220	92	A7			
200	226	84	A8			

Figure S3.1.a : corrélation entre ε , moyenne des valeurs calculées à partir de $\lg_{\gamma_{\pm}}$ entre 0,5 et 4 mole/kg généralement, en supposant qu'on n'a affaire qu'à des électrolytes forts. Le coefficient de la TIS, $\varepsilon_{M^+X^-}$, entre les ions M⁺ et X⁻, noté e(M-X) sur la figure, est tracé en fonction de celui de $\varepsilon_{Na^+X^-}$. L'échelle est très dilatée pour rendre la figure lisible : la précision sur ε est généralement que de quelques centièmes de kg/mol. En général $\varepsilon_{H^+X^-} \approx \varepsilon_{Li^+X^-} + 0,10 \pm 0,03$, $\varepsilon_{K^+X^-} \approx \varepsilon_{Na^+X^-} - 0,04 \pm 0,02$. On trouve également $\varepsilon_{H^+X^-} \approx \varepsilon_{Li^+X^-} > \varepsilon_{K^+X^-} \geq \varepsilon_{Rb^+X^-} \geq \varepsilon_{Cs^+X^-} \approx \varepsilon_{Na_+X^-} + 0,10 \pm 0,03$, $\varepsilon_{K^+X^-} \approx \varepsilon_{Na_+X^{--}} - 0,04 \pm 0,02$. On trouve également $\varepsilon_{H^+X^-} \approx \varepsilon_{Li^+X^-} > \varepsilon_{K^+X^-} \geq \varepsilon_{Rb^+X^-} \geq \varepsilon_{Cs^+X^-} \approx \varepsilon_{Na_+X^-} + 0,10 \pm 0,03$, $\varepsilon_{K^+X^-} \approx \varepsilon_{Na_+X^{--}} - 0,04 \pm 0,02$. On trouve également $\varepsilon_{H^+X^-} \approx \varepsilon_{Li^+X^-} > \varepsilon_{K^+X^-} \geq \varepsilon_{Rb^+X^-} \geq \varepsilon_{Cs^+X^-} \approx \varepsilon_{Na_+X^-} + 0,10 \pm 0,03$, $\varepsilon_{K^+X^-} \approx \varepsilon_{Na_+X^{--}} - 0,04 \pm 0,02$. On trouve également $\varepsilon_{H^+X^-} \approx \varepsilon_{Li^+X^-} > \varepsilon_{K^+X^-} \geq \varepsilon_{Rb^+X^-} \geq \varepsilon_{Cs^+X^-} \approx \varepsilon_{Na_+X^-} + 0,10 \pm 0,03$, $\varepsilon_{K^+X^-} \approx \varepsilon_{Na_+X^{--}} - 0,04 \pm 0,02$. On trouve également $\varepsilon_{H^+X^-} \approx \varepsilon_{Li^+X^-} \geq \varepsilon_{Rb^+X^-} \geq \varepsilon_{Cs^+X^-} \approx \varepsilon_{Na_+X^-} + 0,10 \pm 0,03$, $\varepsilon_{K^+X^-} \approx \varepsilon_{Na_+X^{--}} - 0,04 \pm 0,02$. On trouve également $\varepsilon_{H^+X^-} \approx \varepsilon_{Li^+X^-} \geq \varepsilon_{Rb^+X^-} \geq \varepsilon_{Cs^+X^-} \approx \varepsilon_{Na_+X^-} + 0,10 \pm 0,03$, $\varepsilon_{K^+X^-} \approx \varepsilon_{Na_+X^{--}} - 0,04 \pm 0,02$. On trouve également $\varepsilon_{H^+X^-} \approx \varepsilon_{Li^+X^-} \geq \varepsilon_{Rb^+X^-} \geq \varepsilon_{Cs^+X^-} \approx \varepsilon_{Na_+X^-} + 0,10 \pm 0,03$, $\varepsilon_{K^+X^-} \approx \varepsilon_{Na_+X^{--}} - 0,04 \pm 0,02$. On trouve également $\varepsilon_{H^+X^-} \approx \varepsilon_{Li^+X^-} \geq \varepsilon_{Rb^+X^-} \geq \varepsilon_{Cs^+X^-} \approx \varepsilon_{Na_+X^-} + \varepsilon_{Sa_+X^-} = \varepsilon_{Sa_+X^-} + 0,10 \pm 0,03$, $\varepsilon_{K^+X^-} \approx \varepsilon_{Na_+X^{--}} - 0,04 \pm 0,02$. On trouve également corréler les ε de complexes en fonction de leur charge et de façon générale (mais c'est approximatif) les ε sont d'autant plus grand que les charges sont plus importantes jusqu'à + 4

Figure S3.1.b : Corrélation entre ε , valeurs calculées en minimisant la somme des résidus de $\lg_{\gamma_{\pm}}$ entre 0,5 et 4 mole/kg généralement. Cette figure est analogue à la *figure S3.1.a.* Le détail de la partie centrale est donné figure suivante. EMEXEL

S3.2. Activité d'eau

Tableau S3.2.a : valeurs moyennes de lga_{H_2O}/m (m molalité, a_{H_2O} activité d'eau) pour différentes valeurs de m et comme pour ε, valeur moyenne, p.

				Н	HSO	4 HS	04]	NO3	ClO4	Ι	В	r	Cl			
				р	-0,02	0 -0,	020 -	0,016	-0,019	-0,02	20 -0,	020 -	0,018			
			(0,1	-0,01	5 -0,0	015 -	0,015	-0,015	-0,01	5 -0,	015 -	0,015			
			(0,2	-0,01	5 -0,	015 -	0,015	-0,015	-0,01	5 -0,	015 -	0,015			
			(0,3	-0,01	5 -0,0	015 -	0,015	-0,015	-0,01	5 -0,	015 -	0,015			
			(0,5	-0,01	6 -0,	016 -	0,015	-0,015	-0,01	6 -0,	016 -	0,015			
			(0,7	-0,01	6 -0,	016 -	0,015	-0,016	-0,01	7 -0,	016 -	0,016			
]	1	-0,01	7 -0,	017 -	0,015	-0,016	-0,01	7 -0,	017 -	0,016			
]	1,5	-0,01	9 -0,	018 -	0,016	-0,018	-0,01	9 -0,	018 -	0,017			
			4	2	-0,02	0 -0,	020 -	0,016	-0,019	-0,02	21 -0,	020 -	0,019			
			4	2,5	-0,02	1 -0,	021 -	0,017	-0,020	-0,02	2 -0,	021 -	0,020			
			2	3	-0,02	3 -0,0	023 -	0,017	-0,022	-0,02	.4 -0,	023 -	0,021			
			4	4	-0,02	6 -0,	026 -	0,018	-0,025	-0,02	.8 -0,	026 -	0,024			
			4	5	-0,02	9 -0,	029 -	0,019	-0,029	-0,03	2 -0,	029 -	0,026			
			(5	-0,03	2 -0,	032 -	0,020	-0,033	-0,03	6 -0,	032 -	0,029		_	
		I	j	NO3	NO2	Br	O3 (C1O4	ClO3	OH]		Br	Cl		
			р	-0,017	-0,01	7 -0,	016 -	0,019	-0,018	-0,01	3 -0,	017 -	0,017	-0,018	_	
		0,1	l	-0,015	-0,01	5 -0,0	015 -	0,015	-0,015	-0,01	4 -0,	015 -	0,015	-0,015		
		0,2	2	-0,015	-0,01	5 -0,0	014 -	0,015	-0,015	-0,01	4 -0,	015 -	0,015	-0,015		
		0,3	3	-0,015	-0,01	5 -0,0	014 -	0,015	-0,015	-0,01	4 -0,	015 -	0,015	-0,015		
		0,5	5	-0,015	-0,01	5 -0,0	014 -	0,016	-0,015	-0,01	4 -0,	016 -	0,015	-0,015		
		0,7	7	-0,015	-0,01	5 -0,0	014 -	0,016	-0,015	-0,01	4 -0,	016 -	0,016	-0,015		
		1		-0,016	-0,01	6 -0,	015 -	0,017	-0,016	-0,01	3 -0,	017 -	0,016	-0,016		
		1,5	5	-0,016	-0,01	6 -0,	015 -	0,018	-0,017	-0,01	3 -0,	018 -	0,017	-0,017		
		2		-0,017	-0,01	7 -0,	016 -	0,019	-0,018	-0,01	3	-	0,019	-0,018		
		2,5	5	-0,018	-0,01	8 -0,	016 -	0,021	-0,019	-0,01	3	-	0,020	-0,019		
		3		-0,018	-0,01	8 -0,	017 -	0,022	-0,020	-0,01	3			-0,020		
		4		-0,020	-0,01	9 -0,	018 -	0,025	-0,022	-0,01	3			-0,023		
		5		-0,021	-0,02	1 -0,	019		-0,023					-0,025		
		6		-0,022	-0,02	2								-0,028		
Na	H2AsO4	H2PO4	HSO4	HCO3	HSe	NO3	NO2	CNS	BrO3	ClO4	ClO3	OH	Ι	Br	Cl	F
р	-0,007	-0,012	-0,022	-0,013	-0,014	-0,013	-0,014	-0,016	-0,013	-0,015	-0,014	-0,016	-0,017	-0,016	-0,015	-0,014
0,1	-0,014	-0,014	-0,015	-0,014	-0,015	-0,014	-0,014	-0,015	-0,014	-0,015	-0,014	-0,015	-0,015	-0,015	-0,015	-0,014
0,2	-0,013	-0,014	-0,016	-0,014	-0,014	-0,014	-0,014	-0,015	-0,014	-0,014	-0,014	-0,014	-0,015	-0,015	-0,014	-0,014
0,3	-0,012	-0,013	-0,016	-0,014	-0,014	-0,014	-0,014	-0,015	-0,014	-0,014	-0,014	-0,014	-0,015	-0,015	-0,014	-0,014
0,5	-0,010	-0,013	-0,018	-0,014	-0,014	-0,014	-0,014	-0,015	-0,014	-0,014	-0,014	-0,014	-0,015	-0,015	-0,014	-0,014
0,7	-0,009	-0,013	-0,019	-0,013	-0,014	-0,014	-0,014	-0,015	-0,013	-0,014	-0,014	-0,015	-0,015	-0,015	-0,014	-0,014
1	-0,007	-0,012	-0,021	-0,013	-0,014	-0,013	-0,014	-0,015	-0,013	-0,014	-0,014	-0,015	-0,015	-0,015	-0,015	-0,014
1,5	-0,003	-0,012	-0,024	-0,013	-0,014	-0,013	-0,014	-0,016	-0,013	-0,014	-0,014	-0,015	-0,016	-0,015	-0,015	
2		-0,011	-0,027			-0,013	-0,014	-0,016	-0,013	-0,015	-0,014	-0,016	-0,017	-0,016	-0,015	
2,5		-0,011				-0,013	-0,014	-0,017	-0,012	-0,015	-0,014	-0,017	-0,018	-0,017	-0,016	
3		-0,011				-0,013	-0,015	-0,017		-0,015	-0,014	-0,017	-0,019	-0,017	-0,016	
4		-0,011				-0,012	-0,015	-0,018		-0,016	-0,015	-0,019	-0,020	-0,019	-0,017	
5		-0,011				-0,012	-0,015			-0,016		-0,021			-0,019	
6		-0,011				-0,012				-0,017		-0,023			-0,020	